- 无标题文档
查看论文信息

中文题名:

 对草地贪夜蛾高毒力Vip3Aa突变体的研究    

姓名:

 杨小雪    

学号:

 S180901086    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071010    

学科名称:

 生物化学与分子生物学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 东北农业大学    

院系:

 生命科学学院    

专业:

 生物化学与分子生物学    

第一导师姓名:

 张杰    

第一导师单位:

 东北农业大学    

完成日期:

 2021-06-15    

答辩日期:

 2021-08-22    

外文题名:

 Study on Vip3Aa Mutant with High Virulence to Spodoptera frugiperda    

中文关键词:

 苏云金芽胞杆菌 ; Vip3蛋白 ; 突变体 ; 杀虫活性    

外文关键词:

 Bacillus thuringiensis ; Vip3 protein ; mutant ; insecticidal activity    

中文摘要:

苏云金芽胞杆菌(Bacillus thuringiensis,Bt)产生的营养期杀虫蛋白(Vegetative insecticidal proteins,VIPs)Vip3类对鳞翅目害虫具有良好的杀虫活性。Vip3蛋白与Cry蛋白氨基酸序列相似性极低且杀虫作用机制不同,因此,在转基因作物上叠加使用vip3与cry基因可以延缓靶标昆虫抗性的产生。为了获得对鳞翅目害虫具有高毒力的新型Vip3类杀虫蛋白,本研究以实验室前期克隆的vip3Aa基因为模板利用定点突变技术构建突变体,原核表达后的突变体蛋白对鳞翅目害虫进行杀虫活性的测定和杀虫机制的分析,研究结果如下:

(1)基于已报道的Vip3Aa突变体蛋白对甜菜夜蛾杀虫活性的研究,参考其6个关键氨基酸位点,并在此基础上,构建了4个多氨基酸位点突变体,这些突变体在大肠杆菌中均表达为可溶性蛋白。杀虫活性测定结果表明,Vip3Aa蛋白对草地贪夜蛾初孵幼虫的LC50为0.946 μg/g,Vip3Aa-S543N/I544L/E627A和S543N/I544L/S686R突变体蛋白的LC50分别为0.118 μg/g和0.365 μg/g,杀虫活性分别提高8倍和2.6倍;Vip3Aa蛋白对棉铃虫初孵幼虫的LC50为11.528 μg/g,Vip3Aa-S543N/I544L/S686R突变体蛋白的LC50为3.577 μg/g,杀虫活性提高3.2倍;在浓度为100 µg/g时,Vip3Aa蛋白对草地贪夜蛾的校正死亡率为93.8%,而Vip3Aa-W552A和N624A突变体蛋白的校正死亡率仅为2.1%,丧失了对草地贪夜蛾的杀虫活性。

(2)中肠液体外活化实验结果表明,Vip3Aa-S543N/I544L/E627A和S543N/I544L/S686R突变体蛋白在草地贪夜蛾和棉铃虫的中肠液中比Vip3Aa蛋白更稳定,Vip3Aa-N624A突变体蛋白被草地贪夜蛾中肠液完全活化。

(3)通过酶联免疫测定法(ELISA)检测Vip3Aa和突变体蛋白与鳞翅目害虫中肠BBMVs之间的结合能力,结果表明,Vip3Aa蛋白与草地贪夜蛾BBMVs结合的解离常数Kd=87.92±13.03nmol/L,Vip3Aa-N624A突变体蛋白的Kd=195.78±18.89 nmol/L,Vip3Aa-S543N/I544L/E627A突变体蛋白的Kd=17.324±4.14 nmol/L,Vip3Aa-S543N/I544L/S686R突变体蛋白的Kd=33.83±7.22 nmol/L,与Vip3Aa蛋白相比,Vip3Aa-S543N/I544L/E627A和S543N/I544L/S686R突变体蛋白与草地贪夜蛾BBMVs结合能力分别提高5倍和2.6倍,Vip3Aa-N624A突变体蛋白与草地贪夜蛾BBMVs结合能力降低2.2倍;Vip3Aa蛋白与棉铃虫BBMV  s结合的解离常数Kd=224.77±30.28 nmol/L,Vip3Aa-S543N/I544L/S686R突变体蛋白的Kd=69.70±8.78 nmol/L,与Vip3Aa蛋白相比,Vip3Aa-S543N/I544L/S686R突变体蛋白与棉铃虫BBMVs结合能力提高3.2倍。

(4)Vip3蛋白的第Ⅳ和第Ⅴ结构域为非保守区域,这个区域与杀虫特异性有关,其中loop区域很有可能参与受体的结合,因此,选取了暴露在外侧的loop区域氨基酸位点进行突变,成功获得10个可溶性突变蛋白。杀虫活性测定结果表明,Vip3Aa蛋白对草地贪夜蛾初孵幼虫的LC50为1.267 μg/g,Vip3Aa-K588A/K590A/K592A、S689A和N773A/N774A突变体蛋白的LC50分别为6.600 μg/g、6.936 μg/g和4.558 μg/g,杀虫活性分别降低5.2倍、5.5倍和3.6倍;Vip3Aa-D728A、L775A/Y776A/G777A和G778A/P779A/I780A突变体蛋白在浓度为200 μg/g时,对草地贪夜蛾未表现出明显的杀虫活性。

本研究获得了较Vip3Aa蛋白杀虫活性显著提高的突变体蛋白,为获得高毒力蛋白提供思路,为鳞翅目害虫的防治提供新的资源;同时,分析了杀虫活性产生差异的原因并探索了蛋白质氨基酸对杀虫活性的影响,为Vip3Aa蛋白杀虫机理的研究奠定基础。

外文摘要:

Vegetative insecticidal proteins (VIPs) produced by Bacillus thuringiensis (Bt) have good insecticidal activity against lepidopteran pests. Vip3 proteins do not share homology in sequence with Cry proteins and their mechanism of action is different. Vip3Aa has no cross resistance with Cry proteins, therefore, vip3 and cry genes are often co-expressed in transgenic crops to delay development of insect resistance. In order to obtain novel Vip3 insecticidal proteins with higher toxicity against lepidopteran insects, the vip3Aa gene cloned in our laboratory was used as material to construct mutants by site-directed mutagenesis. The insecticidal activity of the expressed proteins against lepidopteran pests and and analysis of insecticidal mechanism were determined. The results are as follows:

(1) Based on the reported insecticidal activity of Vip3Aa mutant protein against S. exigua, four mutants with multiple amino acid sites were constructed according to its six key amino acid sites. These mutants were expressed as soluble proteins in E. coli. The bioassay results showed that the LC50 of wild type protein against S. frugiperda was 0.946 μg/g. The LC50 of Vip3Aa-S543N/I544L/E627A and S543N/I544L/S686R mutant protein against S. frugiperda were 0.118 μg/g and 0.365 μg/g, respectively, and the insecticidal activity increased 8-fold and 2.6-fold. The LC50 of wild-type protein against H. armigera was 11.528 μg/g, and that of Vip3aA-S543N /I544L/S686R mutant protein was 3.577 μg/g, the insecticidal activity increased 3.2-fold. At the concentration of 100 µg/g, the corrected mortality of wilt-type protein against Spodoptera frugiperda was 93.8% and the corrected mortality of Vip3Aa-W552A and N624A mutant protein were only 2.1%, indicating that the two mutant proteins lost their insecticidal activity against S. frugiperda.

(2) Experimental results of intestinal fluid activation in vitro, Vip3Aa-S543N/I544L/E627A and S543N/I544L/S686R mutant proteins were more stable than wild-type proteins in the midgut fluid of S. frugiperda and H. armigera. Vip3Aa-N624A mutant protein was completely activated by the midgut fluid of S. frugiperda.

(3) The results of ELISA showed that the dissociation constant of wild-type protein with BBMVs of S. frugiperda was 87.92±13.03 nmol/L, and the Kd of Vip3Aa-N624A mutant protein was 195.78±18.89 nmol/L. The Kd of Vip3Aa-S543N/I544L/E627A and Vip3aA-S543N/I544L/S686R mutant protein were 17.324±4.14 nmol/L and 33.83±7.22 nmol/L, respectively. The binding ability of Vip3aA-S543N/I544L/E627A and S543N/I544L/S686R mutant protein to BBMVs of S. frugiperda were increased 5-fold and 2.6-fold, respectively, while the binding ability of Vip3aA-N624A protein was decreased 2.2-fold. The dissociation constant of Vip3Aa protein to BBMVs of H. armigera was 224.77±30.28 nmol/L, and the Kd of Vip3Aa-S543N/I544L/S686R mutant protein was 69.70±8.78 nmol/L. The binding ability of Vip3aA-S543N/I544L/S686R mutant protein to BBMVs of H. armigera was increased 3.2-fold.

(4) The IV and V domains of Vip3 protein are non-conservative regions, which are related to insecticidal specificity. The loop region is likely to participate in the binding of receptors. Therefore, the amino acid sites of the loop region exposed to the outside were selected for mutation, and 10 soluble mutant proteins were successfully obtained. The bioassay results showed that the LC50 of wild type protein against S. frugiperda was 1.267 μg/g. The LC50 of Vip3Aa-K588A/K590A/K592A, S689A and N773A/N774A mutant proteins were 6.600 μg/g, 6.936 μg/g and 4.558 μg/g, respectively, and the insecticidal activity decreased 5.2-fold, 5.5-fold and 3.6-fold. Vip3Aa-D728A, L775A/Y776A/G777A and G778A/P779A/I780A mutant proteins showed no significant insecticidal activity against S. frugiperda at the concentration of 200 μg/g.

In this study, several mutant proteins with higher insecticidal activity than the wild-type protein were obtained, which provided new ideas for obtaining highly virulent proteins and provided new resources for the control of lepidopteran pests. At the same time, the reasons for the changes of insecticidal activity were analyzed. The exploration of key amino acid sites for insecticidal activity lay a foundation for the study of insecticidal mechanism of Vip3Aa protein.

参考文献:

TODD E L,P R W. Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guené from the western hemisphere[J]. Annals of the Entomological Society of America,1980,73(6):722-738.

[2] MONTEZANO D G,SPECHT A,SOSA-GóMEZ D R,et al. Host plants of Spodoptera frugiperda (Lepidoptera:Noctuidae) in the Americas[J]. African Entomology,2018,26(2):286-300.

[3] SPARKS A N. A review of the biology of the fall armyworm[J]. The Florida Entomologist, 1979, 62(2): 82.

[4] DUMAS P,LEGEAI F,LEMAITRE C,et al. Spodoptera frugiperda (Lepidoptera:Noctuidae) host-plant variants:two host strains or two distinct species?[J]. Springer Open Choice,2015,143(3):305-316.

[5] VILARINHO E C,FERNANDES O A,HUNT T E,et al. Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in Maize in Brazil[J]. Florida Entomologist, 2011. 94 (3):480-488.

[6] HARRISON FP. The development of an economic injury level for low populations of fall armyworm (Lepidoptera: Noctuidae) in grain corn[J]. Florida Entomologist, 1984, 67(3): 335-339.

[7] FARIAS C A,BREWER M J,ANDERSON D J,et al. Native maize resistance to corn earworm, helicoverpa zea1, and fall armyworm, Spodoptera frugiperda1, with notes on aflatoxin content[J]. Southwestern Entomologist, 2009, 39(3): 411-425.

[8] ROGER D P A, MELANIE B. Fall armyworm: impacts and implications for Africa[J]. Outlooks on Pest Management, 2017, 28(5): 196-201.

[9] GOERGEN G,KUMAR PL,SANKUNG SB,et al. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa[J]. PLOS ONE, 2016, 11(10). :e0165632.

[10] 郭井菲,静大鹏,太红坤,等. 草地贪夜蛾形态特征及与3种玉米田为害特征和形态相近鳞翅目昆虫的比较[J]. 植物保护, 2019, 45(2): 7-21.

[11] 张磊,靳明辉,张丹丹,等. 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2): 19-24+56.

[12] ZHOU Y,QIU-LIN W U,ZHANG H W,et al. Spread of invasive migratory pest Spodoptera frugiperda and management practices throughout China[J]. Journal of Integrative agriculture, 2021, 20(3): 637-645.

[13] FAO. The global action for fall armyworm control: action framework 2020-2022. Working Together to Tame the Global Threat-Rome[EB/OL]. 2020. https://doi.org/10.4060/ca9252en.

[14] 农业农村部. 农业农村部关于印发《全国草地贪夜蛾防控方案》的通知[EB/OL]. 2019-06-21. http://www.moa.gov.cn/govpublic/ZZYGLS/201906/t20190628_6319824.htm.

[15] REBECA G M,DAVID M S,BLANCO C A,et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico[J]. Journal of Economic Entomology, 2019, (2): 792-802.

[16] 赵胜园, 孙小旭, 张浩文,等. 常用化学杀虫剂对草地贪夜蛾防效的室内测定[J]. 植物保护, 2019, 45(03): 10-14+20.

[17] AGROPAGES. Monitoring called key when combating fall armyworm in Brazil[EB/OL]. 2019-08-02. http://news.agropages.com/News/NewsDetail---31387.htm.

[18] 世界农化网. 我国第五个草地贪夜蛾防治药剂获批扩作登记[EB/OL]. 2021-03-16. http://cn.agropages.com/News/NewsDetail---22903.htm.

[19] 王建, 杨小雪, 王丹丹,等. 对草地贪夜蛾高毒力的苏云金芽胞杆菌菌株筛选与杀虫活性研究[J]. 中国生物防治学报, 2021, 1-12.

[20] JR A,SEN B,MM A,et al. Genetically engineered crops help support conservation biological control - sciencedirect[J]. Biological Control, 2019, 130:136-154.

[21] XIAO Y,WU K. Recent progress on the interaction between insects and Bacillus thuringiensis crops[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2019, 374(1767): 20180316.

[22] 吴超,张磊,廖重宇,等. 草地贪夜蛾对化学农药和Bt作物的抗性机制及其治理技术研究进展[J]. 植物保护学报, 2019, 46(03): 503-513.

[23] BURD,TONY,FATORETTO,et al. Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil[J]. Crop Protection, 2015.

[24] HUANG F,QURESHI J A,HEAD G P,et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Protection, 2016, 83:83-89.

[25] JIN GLDR. Frequency of Cry1F non-recessive resistance alleles in north carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. PLOS ONE, 2016, 11(4): e0154492.

[26] BLANCO,CARLOS A,PORTILLA, MARIBEL,et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis[J]. Southwestern Entomologist, 2010, 35: 409-415.

[27] STORER N P,BABCOCK J M,SCHLENZ M,et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico[J]. Journal of Economic Entomology, 2010, 103(4): 1031-1038.

[28] ROSE M,ERICA M,CRISTINA M,et al. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins[J]. PLOS ONE, 2015, 10(4): e0119544.

[29] FATORETTO JC,MICHEL AP SFM. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil.[J]. Journal of Integrated Pest Management, 2017, 8(1): 17.

[30] CHANDRASENA D I,SIGNORINI A M,ABRATTI G,et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ - endotoxin in Spodoptera frugiperda populations from Argentina[J]. Pest Management Science, 2018, 74(3): 746-754.

[31] SIGNORINI A M,GUSTAVO A,DAMIáN G,et al. Management of field-evolved resistance to Bt maize in Argentina: a multi-institutional approach[J]. Frontiers in Bioengineering Biotechnology, 2018, 25(6):67.

[32] RASKO D A,ALTHERR M R,HAN C S,et al. Genomics of the Bacillus cereus group of organisms[J]. Fems Microbiology Reviews, 2005, (2): 303-329.

[33] ARONSON A I,BECKMAN W,DUNN P. Bacillus thuringiensis and related insect pathogens[J]. Microbiological Reviews, 1986, 50(1): 1.

[34] ESTRUCH J J,CAROZZI N B,DESAI N,et al. Transgenic plants: an emerging approach to pest control[J]. Nature Biotechnology, 1997, 15(2): 137-141.

[35] BOURQUE S N,VALéRO J,MERCIER J,et al. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis[J]. Applied & Environmental Microbiology, 1993, 59(2): 523-527.

[36] ASOKAN R. Isolation and characterization of Bacillus thuringiensis berliner from soil, leaf, seed dust and insect cadaver[J]. Journal of Biological Control, 2007, 21(1)3984.

[37] NEETHU K B,PRIJI P,UNNI K N,et al. New Bacillus thuringiensis strain isolated from the gut of Malabari goat is effective against Tetranychus macfarlanei[J]. Journal of Applied Entomology, 2016, 140(3): 187-198.

[38] DIANE M C, KENNETH W,et al. A comparison of protein crystal subunit sizes in Bacillus thuringiensis[J]. Canadian Journal of Microbiology, 1980, 26(8): 1006-1010.

[39] ISAAA. Global status of commercialized biotech/GM crops in 2017:biotech crop adoption surges as economic benefits accumulate in 22 years. Ithaca, NY:ISAAA, 2017:1.

[40] GOULD F, AMASINO R M, BROSSARD D,et al. Engineering, and medicine.genetically engineered crops: experiences and prospects[M].Washington, DC:National Academies Press.2016.SYED T.

[41] WEI J Z,HALE K,CARTA L,et al. Bacillus thuringiensis crystal proteins that target nematodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): P.2760-2765.

[42] MAISSA,CHAKROUN,JUAN,et al. In vivoandIn vitrobinding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by125I radiolabeling[J]. Applied Environmental Microbiology, 2014, 80(20): 6258-6265.

[43] SCHNEPF HE,WHITELEY HR. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(5): 2893-2897.

[44] HFTE H, WHITELEY, H. R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiological Reviews, 1989, 53(2): 242-255.

[45] CRICKMORE N,ZEIGLER DR,FEITELSON J,et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol.mol.biol.rev, 1998, 62(3): 807-813.

[46] FIUZA L M,POLANCZYK R A,CRICKMORE N. Bacillus thuringiensis and Lysinibacillus sphaericus[J]. Springer International Publishing, 2017, 10.1007/978-3-319-56678-8.

[47] CRICKMORE N,BERRY C,PANNEERSELVAM S,et al. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins[J]. J Invertebr Pathol, 2020.

[48] FRANKENHUYZEN K V. Insecticidal activity of Bacillus thuringiensis crystal proteins[J]. Journal of Invertebrate Pathology, 2009, 101(1): 1-16.

[49] SCHNEPF E,CRICKMORE N,LERECLUS D,et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol Mol Biol Rev, 1998, 62(3): 775-806.

[50] LI J D,CARROLL J,ELLAR D J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. (cover story)[J]. Nature, 1991, 353(6347): 815-815.

[51] SANAHUJA G,BANAKAR R,TWYMAN R M,et al. Bacillus thuringiensis: a century of research, development and commercial applications[J]. Plant Biotechnology Journal, 2015, 9(3): 283-300.

[52] PALMA L,MU?OZ D,BERRY C,et al. Bacillus thuringiensis toxins: an overview of their biocidal activity[J]. Toxins, 2014, 6(12): 3296-3325.

[53] MOAZAMIAN E,BAHADOR N,AZARPIRA N,et al. Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell lines[J]. Current Microbiology: An International Journal, 2018, 75(8):1090-1098.

[54] OHBA M,MIZUKI E,UEMORI A. Parasporin, a new anticancer protein group from Bacillus thuringiensis[J]. Anticancer Research, 2009, 29(1): 427-433.

[55] MIZUKI E,YU S P,SAITOH H,et al. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis[J]. Clinical Diagnostic Laboratory Immunology, 2000, 7(4): 625.

[56] BRAVO A,GILL S S,SOBERóN M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon, 2007, 49(4): 423-435.

[57] BUTKO, P. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses[J]. Applied environmental microbiology, 2003, 69(5): 2415-2422.

[58] EITAN B-D. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins[J]. Toxins, 2014, 6(4): 1222-1243.

[59] COHEN S,ALBECK S,BEN-DOV E,et al. Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function[J]. Journal of Molecular Biology, 2011, 413(4): 804-814.

[60] YU X,LIU T,SUN Z,et al. Co-expression and synergism analysis of Vip3Aa29 and Cyt2Aa3 insecticidal proteins from Bacillus thuringiensis[J]. Current Microbiology, 2012, 64(4): 326-331.

[61] BRAVO MSJL-DA. Cyt toxins produced by Bacillus thuringiensis:a protein fold conserved in several pathogenic microorganisms[J]. Peptides, 2013, 41(1): 87-93.

[62] Estruch J J,Warren G W,Mullins M A,et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5389.

[63] DONOVAN W P,ENGLEMAN J T,DONOVAN J C,et al. Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae[J]. Applied Microbiology and Biotechnology, 2006, 72(4): 713-719.

[64] SONG,FF,CHEN,et al. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation[J]. Scientific Reports,2016,6(1):128.

[65] BEARD C E,COURT L,BOETS A,et al. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection[J]. Current Microbiology, 2008, 57(3): 195-199.

[66] RAMASAMY B,NADARAJAH V D,SOONG Z K,et al. A preliminary study of the bioactivity of vegetative proteins extracted from Malaysian Bacillus thuringiensis isolates[J]. Tropical Biomedicine, 2008, 25(1): 64-74.

[67] YU C G,MULLINS M A,WARREN G W,et al. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects[J]. Applied Environmental Microbiology, 1997, 63(2): 532.

[68] CRICKMORE N B C,PANNEERSELVAM S,MISHRA R,et al. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins[J]. Journal of Invertebrate Pathology, 2020, 9:107438.

[69] RUIZ D E ESCUDERO I,BANYULS N,BEL Y,et al. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests[J]. Journal of Invertebrate Pathology, 2014, 117(1):51-55.

[70] CHAKROUN M,BANYULS N,BEL Y,et al. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria[J]. Microbiology and molecular biology reviews, 2016, 80(2): 329-350.

[71] JING Z A,ZZP B,LIAN X A,et al. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease[J]. International Journal of Biological Macromolecules, 2018, 107:1220-1226.

[72] SENA J A,HERNáNDEZ-RODRíGUEZ C S,FERRé J,et al. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera fugiperda midgut binding sites[J]. Applied Environmental Microbiology, 2009, 75(7): 2236-2237.

[73] ZEYU W,LONGFA F,ZISHAN Z,et al. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer ( Chilo suppressalis )[J]. Journal of Biological Chemistry, 2018;293(29):11447-11458.

[74] KURTZ R W,MCCAFFERY A,O’REILLY D. Insect resistance management for Syngenta's VipCot transgenic cotton[J]. Journal of Invertebrate Pathology, 2007, 95(3): 227-230.

[75] JACKSON R E,MARCUS M A,GOULD F,et al. Cross-resistance responses of Cry1Ac-selected heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein Vip3A[J]. Journal of Economic Entomology, 2007, (1): 180-186.

[76] TABASHNIK B E,CARRIèRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926.

[77] ASKARI M,MENG Z,et al. Current insights on vegetative insecticidal proteins (Vip) as next generation pest killers[J]. Toxins (Basel), 2020, 12(8): 522.

[78] RIAZ S,NASIR IA,BHATTI MU,et al. Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein[J]. Molecular Biology Reports, 2020, 47(4): 2649-2658.

[79] BETT B,GOLLASCH S,MOORE A,et al. Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the maruca pod borer (Maruca vitrata)[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 131(2): 335-345.

[80] YAN X,LU J,REN M,et al. Insecticidal activity of 11 Bt toxins and 3 transgenic maize events expressing Vip3Aa19 to black cutworm, Agrotis ipsilon (Hufnagel)[J]. Insects, 2020, 11(4): 208.

[81] GAYEN S,SAMANTA M K,HOSSAIN M A,et al. A deletion mutant ndv200 of the Bacillus thuringiensis vip3BR insecticidal toxin gene is a prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insect damage[J]. Planta, 2015, 242(1): 269-281.

[82] CARRIèRE Y,CRICKMORE N,TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nature Biotechnology, 2015, 33(2): 161-168.

[83] NUNEZ-RAMIREZ R,HUESA J,BEL Y,et al. Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis[J]. Nature communications, 2020, 11(1): 3974.

[84] GUPTA MAMTA K H, KAUR SARVJEET. Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests[J]. Frontiers in Microbiology, 2021, 13(12):659736.

[85] ZHENG M,EVDOKIMOV A G,MOSHIRI F,et al. Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly[J]. Protein Science, 2020, 29 (4):824-829.

[86] LI C,XU N,HUANG X,et al. Bacillus thuringiensis Vip3 mutant proteins: insecticidal activity and trypsin sensitivity[J]. Biocontrol Science Technology, 2007, 17(7): 699-708.

[87] BANYULS N,HERNáNDEZ-RODRíGUEZ C,RIE J V,et al. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects[J]. Scientific Reports, 2018, 8(1): 7539.

[88] RITU B,MONIKA D,PANGULURI S K,et al. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis[J]. Fems Microbiology Letters, 2010, (2): 467-472.

[89] SELVAPANDIYAN A,ARORA N,RAJAGOPAL R,et al. Toxicity analysis of n- and c-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis[J]. Applied Environmental Microbiology, 2001, 67(12): 5855-5858.

[90] CHEN JJ,YU JX,TANG LX,et al. Comparison of the expression of Bacillus thuringiensis full-length and N-terminally truncated vip3A gene in Escherichia coli[J]. Journal of Applied Microbiology, 2010, 95(2): 310-316.

[91] LIU,RONGMEI,MING,et al. Effects of site-mutations within the 22 kDa no-core fragment of the Vip3Aa11 insecticidal toxin of Bacillus thuringiensis[J]. Current Microbiology An International Journal, 2017 74(5):655-659.

[92] BANYULS N,QUAN Y,GONZáLEZ-MARTíNEZ R,et al. Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 2020, 11:107439.

[93] SRIMONTA GAYEN,MUNSHI AZAD HOSSAIN,SOUMITRA K. SEN. Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis[J]. Journal of Plant Biochemistry Biotechnology, 2012, 21: 128-135.

[94] RANG C,GIL P,NEISNER N,et al. Novel Vip3-related protein from Bacillus thuringiensis[J]. Applied Environmental Microbiology, 2005, 71(10): 6276-6281.

[95] 徐宁. 苏云金芽孢杆菌营养期杀虫蛋白(Vip3)突变体的杀虫活性及其对胰蛋白酶的敏感性[D]. 浙江大学, 2007.

[96] CHI B,LUO G,ZHANG J,et al. Effect of C-terminus site-directed mutations on the toxicity and sensitivity of Bacillus thuringiensis Vip3Aa11 protein against three lepidopteran pests[J]. Biocontrol Science & Technology, 2017, 1-10.

[97] ZACK MD,SOPKO MS,FREY ML,et al. Functional characterization of Vip3Ab1 and Vip3Bc1: two novel insecticidal proteins with differential activity against lepidopteran pests[J]. Scientific Reports, 2017, 7(1) :11112.

[98] AHMAD,AFTAB,JAVED. In-Silico Determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against lepidopteran targets using molecular docking[J]. Frontiers in Plant Science, 2015,2(6):1081.

[99] P HERNáNDEZ-MARTíNEZ,CS HERNáNDEZ-RODRíGUEZ,RIE JV. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests[J]. Journal of Invertebrate Pathology, 2013, 113(1): 78-81.

[100] QUAN Y,FERRé J. Structural domains of the Bacillus thuringiensis Vip3Af protein unraveled by tryptic digestion of alanine mutants[J]. Toxins, 2019, 11(6):368.

[101] KUNTHIC T,WATANABE H,KAWANO R,et al. pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis[J]. Biochim Biophys Acta Biomembr, 2017, 1859(11):2234-2241.

[102] SHAO E,ZHANG A,YAN Y,et al. Oligomer formation and insecticidal activity of Bacillus thuringiensis Vip3Aa toxin[J]. Toxins, 2020, 12(4): 274.

[103] SINGH G,SACHDEV B,SHARMA N,et al. Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda[J]. Appl Environ Microbiol, 2010, 76,7202–7209.

[104] OSMAN GH,RAYA S,IBRAHIM S,et al. Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm ( Agrotis ipsilon ) of Bacillus thuringiensis Vip3Aa toxins[J]. Saudi Journal of Biological Sciences, 2018, 26(5):1078-1083.

[105] JIANG K,HOU X,HAN L,et al. Fibroblast growth factor receptor, a novel receptor for vegetative insecticidal protein Vip3Aa[J]. 2018, 10(12) :546.

[106] JIANG K,HOU XY,TAN TT,et al. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis[J]. PLoS Pathogens, 2018, 14(10) :e1007347.

[107] LEE MK,WALTERS FS,HART H,et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin[J]. Appl Environ Microbiol, 2003, 69(8): 4648-4657.

[108] HOU X,HAN L,AN B,et al. Mitochondria and lysosomes participate in Vip3Aa-induced Spodoptera frugiperda Sf9 cell apoptosis[J]. Toxins, 2020, 12(2) :116.

[109] BARTH H,HOFMANN F,OLENIK C,et al. The N-terminal part of the enzyme component (C2I) of the binaryclostridium botulinum C2 toxin interacts with the binding component C2Ⅱ and functions as a carrier system for a rho ADP-ribosylating C3-like fusion toxin[J]. Infection & Immunity, 1998, 66(4): 1364-1369.

[110] SHI Y,MA W,YUAN M,et al. Cloning of vip1/vip2 genes and expression of Vip1Ca/Vip2Ac proteins in Bacillus thuringiensis[J]. World Journal of Microbiology Biotechnology, 2007, 23(4): 501.

[111] SHI Y,XU W,YUAN M,et al. Expression of vip1/vip2 genes in Escherichia coli and Bacillus thuringiensis and the analysis of their signal peptides[J]. Journal of Applied Microbiology, 2004, 97(4): 757-765.

[112] ZHANG,YR,SHU,et al. Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae[J]. Appl Microbiol Biotechnol, 2015, 99(2): 753-760.

[113] YU X,LIU T,LIANG X,et al. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene[J]. FEMS Microbiology Letters, 2011, 325(1): 30-36.

[114] YIN Y,FLASINSKI S,MOAR W,et al. A new Bacillus thuringiensis protein for western corn rootworm control[J]. PLOS ONE, 2020, 15(11): e0242791.

[115] MEITEI AL,BHATTACHARJEE M,DHAR S,et al. Activity of defense related enzymes and gene expression in pigeon pea (Cajanus cajan) due to feeding of Helicoverpa armigera larvae[J]. Journal of Plant Interactions, 2018, 13(1): 231-238.

[116] 姜玉英,刘杰,曾娟,等. 棉铃虫种群调查及测报技术[J]. 应用昆虫学报, 2018, 55(01): 132-137.

[117] WU KM,GUO YY. The evolution of cotton pest management practices in China[J]. Annual Review of Entomology, 2005, 50:31–52.

[118] DONG W,QIU X,REN X,et al. Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)[J]. Pesticide Biochemistry & Physiology, 2009, 95(2): 90-94.

[119] CHEN H,YIN Y,YAN L,et al. Identification and analysis of genes differentially expressed in the Spodoptera litura fat body in response to the biocontrol fungus, Nomuraea rileyi[J]. Comp Biochem Physiol B Biochem Mol Biol, 2012, 163(2): 203-210.

[120] SHAD SA,SAYYED AH,FAZAL S,et al. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae)[J]. Journal of Pest Science, 2012, 85(1): 153-162.

[121] MOULTON JK,PEPPER DA,DENNEHY TJ. Beet armyworm (Spodoptera exigua) resistance to spinosad[J]. Pest Management Science, 2000, 56(10): 842-848.

[122] MASCARENHAS VJ,GRAVES JB,LEONARD BR,et al. Dosage-mortality responses of third instars of beet armyworm (Lepidoptera: Noctuidae) to selected insecticides[J]. Journal of Agricultural Entomology, 1998,115:4.

[123] 张云慧,张智,姜玉英,等. 2012年三代黏虫大发生原因初步分析[J]. 植物保护, 2012, 38(05): 1-8.

[124] 江幸福,张蕾,程云霞,等. 我国粘虫研究现状及发展趋势[J]. 应用昆虫学报, 2014, 51(04): 881-889.

[125] FURLONG,MJ,WRIGHT,et al. Diamondback moth ecology and management: problems, progress, and prospects[J]. Annu Rev Entomol, 2013, 58(1): 517-541.

[126] 尤士骏,刘昭霞,熊磊,等. 小菜蛾对苏云金芽胞杆菌(Bt)的抗性研究进展[J]. 应用昆虫学报, 2018, 55(06): 951-962.

[127] ZHANG H,YIN W,ZHAO J,et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China[J]. PLOS ONE, 2011, 6(8): e22874.

[128] 雒国兴,刘荣梅,李海涛,等. 苏云金芽胞杆菌Vip3Aa11蛋白C端点突变对其杀虫活性的影响[J]. 中国生物防治学报, 2018, 34(01): 79-85.

[129] CHI B, H LI, ZHANG J, et al.. In silico structure-based identification and validation of key residues of vip3Aa involving in lepidopteran brush border receptor binding[J]. Appl Biochem Biotechnol, 2019, 187(4): 1448-1459.

[130] RAJAMOHAN F AO, COTRILL J A,CURTISS A,DEAN D H. Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14338–14343.

中图分类号:

 S476    

开放日期:

 2021-09-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式