- 无标题文档
查看论文信息

题名:

 铁力市平贝母菌核病病原菌分离鉴定及防控药剂筛选    

作者:

 李青峰    

学号:

 S220302008    

保密级别:

 内部    

语种:

 chi    

学科代码:

 095131    

学科:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 东北农业大学    

院系:

 农学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 平贝母菌核病防控    

导师姓名:

 武小霞    

导师单位:

 东北农业大学    

第二导师姓名:

 张家平    

完成日期:

 2024-06-10    

答辩日期:

 2024-05-23    

外文题名:

 Isolation and Identification of the Pathogens of the Bulb Black Rot of Fritillaria ussuriensis Maxim in Tieli City and Screening of the Fungicides    

关键词:

 平贝母 ; 菌核病 ; 病原鉴定 ; 生物学特性 ; 药剂筛选    

外文关键词:

 Fritillaria ussuriensis Maxim ; Sclerotium disease ; Pathogens identification ; Bi-ological characteristics ; fungicide screening    

摘要:

平贝母(Fritillaria ussuriensis Maxim)为百合科贝母属多年生草本植物,其鳞茎含有生物碱、多糖等药用成分,具有镇咳平喘等功效,有很高的药用价值及经济价值。铁力市平贝母产量占全国一半以上,由于每年大面积种植,平贝母菌核病日益严重,严重影响其产量和品质。国内外关于平贝母菌核病的研究已有一些报道,但对于铁力市平贝母菌核病还未见报道。本研究于铁力市二屯村及北星村平贝母种植基地进行病样采集,分离鉴定出菌核病病原菌。在此基础上,对病原菌进行生物学特性研究以及开展高效杀菌剂的筛选试验,为平贝母菌核病田间科学防控提供理论依据。主要结果如下:

1. 采用组织分离法从25个病害样品中分离得到96个分离物。根据分离物的菌落形态和颜色,将分离物分为两类,分别编号为G1和G2类,分离频率分别为46.9、53.1%。从G1类分离物和G2类分离物中分别选取一株代表菌株PBJH-1和PBJH-2进行致病性测定,发现两菌株均能感染平贝母鳞茎,症状与田间发病植株一致。对回接鳞茎发病处再分离,得到和原接种菌株具有相同形态特征的菌株,完成了科赫氏法则的验证。通过形态学观察结果结合ITS和LSU基因序列系统发育进化树分析,确定引起铁力市平贝母菌核病的两株病原菌PBJH-1和PBJH-2为Sclerotium denigrans。

2. 生物学特性试验结果表明:两株病原菌在4~25℃均能生长,30℃生长停滞,最适生长温度为20℃;两株病原菌在不同光照条件下生长速率无显著性差异;两株病原菌在pH为4~8范围内均能生长,pH为4时菌丝生长最快,且整体呈现随着pH值升高菌丝生长速率下降的趋势;两株病原菌最佳碳源为麦芽糖;PBJH-1最佳氮源为蛋白胨,PBJH-2最佳氮源为酵母浸粉。

3. 采用菌丝生长速率法测定14种化学杀菌剂、4种植物源杀菌剂和4种抗生素类杀菌剂对两株病原菌的毒力。试验结果表明:化学杀菌剂中,氟菌·肟菌酯、氟啶胺、咪鲜胺、吡唑醚菌酯、唑醚·氟酰胺、戊唑醇、腐霉利、菌核净对PBJH-1抑制效果较好,EC50值均<1 μg/mL,分别为0.0072、0.0074、0.0121、0.0196、0.0234、0.0356、0.1933、0.4366 μg/mL;咪鲜胺、氟啶胺、吡唑醚菌酯、唑醚·氟酰胺、氟菌·肟菌酯、戊唑醇,腐霉利、菌核净对PBJH-2抑制效果较好,EC50值均<1 μg/mL,分别为0.0056、0.0061、0.0069、0.0107、0.0111、0.0249、0.2520、0.5406 μg/mL;植物源杀菌剂中,蛇床子素对PBJH-1和PBJH-2的抑制效果最好,EC50值分别为3.6283、3.3560 μg/mL;抗生素类杀菌剂中,四霉素对PBJH-1和PBJH-2的抑制效果最好,EC50值分别为0.5699、0.3896 μg/mL。采用平板对峙法测定11种生防菌剂对两株病原菌的抑制率。试验结果表明:对PBJH-1和PBJH-2抑制效果最好的生防细菌菌剂为解淀粉芽孢杆菌(农保生物),抑菌带宽度分别为1.33、0.88 cm,抑菌率分别为71.47、67.60%;对PBJH-1和PBJH-2抑制效果最好的生防真菌菌剂为哈茨木霉菌(慧可丰),抑菌率分别为72.65、65.13%。

外摘要要:

Fritillaria ussuriensis Maxim is a perennial herbaceous plant belonging to the genus Fritillaria in the liliaceae family. Its bulb contain medicinal ingredients such as alkaloids and polysaccharides, which can relieve cough and asthma, and have high medicinal and economic value. The production of F. ussuriensis in Tieli City accounts for more than half of the country. Due to large-scale planting every year, the sclerotium disease of F. ussuriensis is becoming more and more serious, which seriously affects its yield and quality. There have been some reports about the sclerotium disease of F. ussuriensis at home and abroad, but there is no report about sclerotium disease in Tieli City. In this study, diseased samples were collected from the planting base of F. ussuriensis in Erun Village and Beixing village of Tieli City, the pathogens of sclerotium disease were isolated and identified. and the biological characteristics of the pathogens were studied. On this basis, the biological characteristics of pathogens were studied and the screening tests of efficient fungicides were carried out to provide theoretical basis for the scientific prevention and control of sclerotium disease in the field of F. ussuriensis. The main results are as follows:

1. 96 isolates were isolated from 25 diseased samples by tissue separation method. According to the colony morphology and color of the isolates, the isolates were divided into two classes, which were numbered as G1 and G2, and the separation frequencies were 46.9 and 53.1%, respectively. A representative strain PBJH-1 and PBJH-2 were selected from G1 and G2 isolates respectively to determine the pathogenicity. It was found that both strains could infect the bulbs of F. ussuriensis, and the symptoms were consistent with those of field infected plants. The strain with the same morphological characteristics as the original inoculated strain was isolated from the disease site of the tieback bulb, and Koch's rule was verified. Through morphological identification and Phylogenetic evolutionary tree analysis of ITS and LSU gene sequences, the two pathogenic strains PBJH-1 and PBJH-2 causing the sclerotium disease in Tieli City were identified as Sclerotium denigrans.

2. The results of biological characteristics test show that: Both strains could grow at 4~25 ℃, but stopped growing at 30 ℃, and the optimal growth temperature was 20 ℃; There was no significant difference in the growth rate of the two pathogens under different light conditions; Both strains could grow in the pH range of 4-8, and the mycelial growth was the fastest when pH was 4, and the overall mycelial growth rate decreased with the increase of pH value; Maltose was the best carbon source for the two strains; The best nitrogen source for PBJH-1 was peptone, and the best nitrogen source for PBJH-2 was yeast extract powder.

3. The virulence of 14 chemical fungicides, 4 botanical fungicides and 4 antibiotics fungicides against two strains of pathogens was determined by mycelium growth rate method. The test results show that: Among the chemical fungicides, Fluopyram·Trifloxystrobin, Fluazinam, Prochloraz, Pyrachostrobin, Pyraclostrobin·Fluxapyroxad, Tebuconazole, Procymidone and Dimethachlon showed better inhibition effect on PBJH-1, and EC50 values were all <1 μg/mL. They were 0.0072, 0.0074, 0.0121, 0.0196, 0.0234, 0.0356, 0.1933, 0.4366 μg/mL, respectively; Prochloraz, Fluazinam, Pyrachostrobin, Pyraclostrobin·Fluxapyroxad, Fluopyram·Trifloxystrobin, Tebuconazole, Procymidone and Dimethachlon showed better inhibition effect on PBJH-2, and EC50 values were all <1 μg/mL. They were 0.0056, 0.0061, 0.0069, 0.0107, 0.0111, 0.0249, 0.2520, 0.5406 μg/mL, respectively; Among the botanical fungicides, Osthle showed the best inhibitory effect on PBJH-1 and PBJH-2, with EC50 values of 3.6283 and 3.3560 μg/mL, respectively; Among the antibiotic fungicides, Tetramycin showed the best inhibitory effect on PBJH-1 and PBJH-2, with EC50 values of 0.5699 and 0.3896 μg/mL, respectively. The inhibition rate of 11 biocontrol agents against two strains of pathogens was determined by plate confrontation method. The test results show that: The biocontrol bacterial agent with the best inhibitory effect on both PBJH-1 and PBJH-2 was Bacillus amyloliquefaciens (Nongbao Biotech), with inhibition band widths of 1.33 cm and 0.88 cm, and inhibition rate of 71.47 and 67.60%, respectively; The biocontrol fungal agent with the best inhibitory effect on both PBJH-1 and PBJH-2 was Trichoderma harzianum (Huikefeng), with inhibition rates of 72.65% and 65.13%, respectively.

参考文献:

[1] 常维春,李景惠,李国英. 平贝母生长发育特性及繁殖方法的观察研究 [J]. 特产科学实验,1982,(04):6-9.

[2] 沈莹,孙海峰,平贝母化学成分及药理作用研究进展[J]. 化学工程师,2018,32(06):62-66.

[3] 刘珈含,赵维,王月,等. 平贝母化学成分、药理作用及临床应用研究进展[J/OL]. 南京中医药大学学报,2024(03):315-328. [2024-05-09]. https://doi.org/10.14148/j.issn.1672-0482.2024.0315.

[4] 王姝婷,杨燕云,许亮,等. 平贝母及贝母类药材本草考证[J]. 辽宁中医药大学学报,2021,23(09):149-156.

[5] 王海璐,魏宇,金银萍. 平贝母与川贝母的异同点及平贝母发展优势研究[J]. 中国现代中药,2021,23(06):1119-1125.

[6] 吴炳礼,吴强,吴娟. 平贝母种栽分级种植经济效益分析[J]. 特种经济动植物,2020,23(01):28-29.

[7] 张树权,李岑,陈晶,等. 黑龙江省平贝母栽培技术[J]. 黑龙江农业科学,2019,(06):125-127.

[8] 秦绪霞,宋青,秦斌,等. 平贝母人工栽培技术实践[J]. 农业开发与装备,2021,(12):221-222.

[9] 王晔. 平贝母高效栽培技术[J]. 特种经济动植物,2021,24(08):46-47.

[10] 唐凤云,王玉萍,荣昌革,等. 双网栽培平贝新技术[J]. 现代化农业,2002,(03):23.

[11] 张翼龙,陈振山,高文中,等. 平贝母的纱网栽培方法[J]. 特种经济动植物,2012,15(10):39-40.

[12] 张武义,吴炳礼,刘兴权,等. 平贝母的主要栽培模式[J]. 特种经济动植物,2011,14(11):41-42.

[13] 由士江,于洪君,李双福. 平贝母菌核病的防治研究[J]. 吉林林业科技,2005,(03):27-29.

[14] 宋小双,遇文婧,尹大川,等. 平贝黑腐病病原菌分离鉴定和生物学特性的初步研究[J]. 中国森林病虫,2016,35(03):7-11.

[15] 孙海峰,沈莹,宁荣彬,等. 防治平贝母菌核病的药剂筛选及田间应用[J]. 农药,2019,58(02):141-144.

[16] 王琪,卢宝慧,王志清,等. 防治平贝母菌核病的木霉菌筛选及室内防效[J]. 微生物学通报,2023,50(06):2497-2507.

[17] 药草场贝母研究小组. 贝母菌核病初步调查报告[J]. 特产科学实验,1974,(01):37-40.

[18] 宋小双,遇文婧,周琦,等. 木霉菌剂与重茬净复配防治平贝黑腐病及对平贝诱导抗性[J]. 森林工程,2015,31(06):24-28.

[19] 王爽,李新民,刘春来,等. 平贝母鳞茎腐烂病病原菌鉴定和药剂筛选[J]. 植物保护,2020,46(06):65-70.

[20] 吴寿兴,马英春. 平贝母锈病的发生与药剂防治研究初报[J]. 中药材科技,1981,(01):18-24.

[21] 朱瑞玮,郑春江,平贝母锈病的发病特点及防治措施[J]. 中国植保导刊,2008,28(12):32-33.

[22] 韩继堂,黄瑞贤,陈丽波,等. 平贝母灰霉病的发生、流行与防治[J]. 中国植保导刊,2009,29(11):31-32.

[23] Bolton M D,Thomma B P H J,Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary:biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology,2006,7(1):1-16.

[24] 吕志远,田立超,何宁佳. 桑椹菌核病研究进展[J]. 植物病理学报,2023,53(01):1-12.

[25] De Hoog G S,Dukik K,Monod M,et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes[J]. Mycopathologia,2017,182:5-31.

[26] 李孟华,刘大军,刘畅,等. 菜豆菌核病病原菌的分离鉴定及防治药剂筛选[J]. 中国蔬菜,2023,(09):77-85.

[27] 伍晓露,王帆帆,唐涛,等. 半夏菌核病病原菌鉴定、生物学特性及防治药剂筛选[J]. 中国农学通报,2023,39(24):114-119.

[28] 孙雅楠,哀嘉彬,唐爱妙,等. 浙江桑葚菌核病的病原菌鉴定及其对4种杀菌剂的抗性检测[J]. 果树学报,2020,37(12):1934-1940.

[29] 王崇仁,汪国森,吴友三. 核盘菌侵染循环类型的研究[J]. 植物病理学报,1992,(04):7-13.

[30] 丁俊杰. 三江平原地区大豆菌核病菌生物学特性研究[J]. 大豆科学,2013,32(03):385-388.

[31] 姬彦飞. 茖葱菌核病室内药剂筛选及拮抗菌研究[D]. 哈尔滨:东北林业大学,2023.

[32] 车喜庆,付俊范,李自博,等. 长白山区人参菌核病发生为害及其病原生物学研究[J]. 中国植保导刊,2015,35(01):5-9.

[33] Derbyshire M,Denton‐Giles M. The control of sclerotinia stem rot on oilseed rape (Brassica napus):current practices and future opportunities[J]. Plant Pathology,2016,65(6):859-877.

[34] Garza J G,Neumann S,Vyn T,et al. Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology,2002,24(2):137-143.

[35] 邵先强. 利用栽培措施控制油菜菌核病的综合研究[J]. 中国植保导刊,2008,(09):18-20.

[36] 刘娥. 平贝母病虫害的发生及防治措施[J]. 中国农业信息,2015,(05):58.

[37] Schwartz H F,Steadman J R,Coyne D P. Influence of Phaseolus vulgaris blossoming characteristics and canopy structure upon reaction to Sclerotinia sclerotiorum[J]. Phytopathology,978,68(3):465-470.

[38] 崔艳艳. 辣椒菌核病的防治现状及防治措施[J]. 种子科技,2019,37(13):126-127.

[39] 李银水,余常兵,廖星,等. 施肥对油菜菌核病发生的影响[J]. 中国油料作物学报,2013,35(03):290-294.

[40] 胡小加,余常兵,李银水,等. 生物肥料对油菜的促生及菌核病防治的研究[J]. 中国油料作物学报,2009,31(04):540-543.

[41] Gepp V,Silvera E,Casanova S,et al. Solarization in the management of lettuce drop (Sclerotinia spp.)[C]//Proc XI International Sclerotinia Workshop,(Young CS and Hughes KJD,eds),Central Science Laboratory,York,UK,July. 2001:8-12.

[42] 杨树,张武,项鹏,等. 大豆菌核病的发生与防治[J]. 现代化农业,2023,(07):9-11.

[43] 郑果,韩宏,白云飞,等. 春油菜拌种对菌核病和跳甲的防效[J]. 西北农业学报,2019,28(05):802-808.

[44] 范文忠,杨静,郑玉石. 不同复配杀菌剂对人参菌核病病菌的室内毒力及田间药效试验[J]. 农药,2019,58(04):296-299.

[45] 孙丽娜,崔晓蕊,张国权. 平贝母人工栽培技术[J]. 现代农业科技,2019,(19):76+78.

[46] Mueller D S,Dorrance A E,Derksen R C,et al. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean[J]. Plant Disease,2002,86(1):26-31.

[47] 陆邢峰,杨凌峰,易红娟. 油菜菌核病防治药剂筛选试验[J]. 浙江农业科学,2015,56(12):2023-2024.

[48] 曹奕鸯,夏朝水,陈昌铭,等. 非洲菊菌核病病原菌的分离鉴定及抑菌药剂筛选[J]. 福建农业学报,2021,36(10):1210-1216.

[49] 肖宇峰,郑丽宁,王晟屹,等. 防治大豆菌核病的药剂筛选及田间应用[J]. 农药,2022,61(05):370-373.

[50] 李红霞,陆悦健,周明国,等. 油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究 [J]. 中国油料作物学报,2003,(02):57-61.

[51] 潘以楼,汪智渊,吴汉章. 油菜菌核病菌(Sclerotinia sclerotiorum)对多菌灵的抗药性及其稳定性[J]. 江苏农业学报,1997,(01):33-36.

[52] 齐永霞,陈方新,苏贤岩,等. 安徽省油菜菌核病菌对多菌灵的抗药性监测[J]. 中国农学通报,2006,(09):371-373.

[53] Ma H X,Feng X J,Chen Y,et al. Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China[J]. Plant Disease,2009,93(1):36-42.

[54] 黄存达,周剑峰,王教利. 菌核净防治人参菌核病试验[J]. 农药,1997,(12):40.

[55] 张维根,陆晓峰,不同药剂防治油菜菌核病试验[J]. 现代农业科技,2006,(08):49.

[56] 匡静,王建新,周明国. 江苏省油菜菌核病菌对多菌灵和菌核净的抗药性监测[J]. 中国农学通报,2011,27(15):285-291.

[57] 胥剑雯,金刚,宋幼春,等. 氟唑菌酰羟胺和戊唑醇·咪鲜胺对油菜菌核病防治效果研究[J]. 湖北植保,2023,(01):41-43.

[58] 黄学屏,宋昱菲,罗健,等. 蔬菜菌核病菌对氟吡菌酰胺的敏感性及防病应用潜力评估[J]. 中国农业科学,2018,51(14):2711-2718.

[59] 唐利平,黄益国,李小芳,等. 6种杀菌剂对油菜菌核病防治效果研究(英文)[J]. Agricultural Science & Technology,2023,24(01):51-55.

[60] Saharan G S,Mehta N. Sclerotinia diseases of crop plants:biology,ecology and disease management[M]. Springer Science & Business Media,2008.

[61] Hu J,Zhou Y,Gao T,et al. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China[J]. Pesticide Biochemistry and Physiology,2019,156:123-128.

[62] Liu S,Zhang Y,Jiang J,et al. Carbendazim resistance and dimethachlone sensitivity of field isolates of Sclerotinia sclerotiorum from oilseed rape in Henan Province,China[J]. Journal of Phytopathology,2018,166(10):701-708.

[63] 李恩琛,郗征,朱娜,等. 核盘菌引起的菌核病生物防治研究进展[J]. 云南农业大学学报(自然科学),2023,38(04):714-724.

[64] 刘胜毅,周必文. 油料作物病原菌核上寄生菌及其防治病害研究述评[J]. 国外农学:油料作物,1992,(2):1-7.

[65] De Vrije T,Antoine N,Buitelaar R,et al. The fungal biocontrol agent Coniothyrium minitans:production by solid-state fermentation,application and marketing[J]. Applied Microbiology and Biotechnology,2001,56:58-68.

[66] Mcquilken M,Gemmell J,Whipps J. Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans[J]. Biocontrol Science and Technology,2002,12(4):443-554.

[67] Giczey G,Kerényi Z,FüLöP L S,et al. Expression of cmg1,an exo-β-1, 3-glucanase gene from Coniothyrium minitans,increases during sclerotial parasitism[J]. Applied and Environmental Microbiology,2001,67(2):865-871.

[68] 杨潇湘,黄小琴,张蕾,等. 生防菌盾壳霉对油菜根际土壤微生物群落结构的影响[J]. 中国农学通报,2022,38(32):92-98.

[69] 许艳云,郑在武,夏红霞,等. 盾壳霉防控油菜菌核病试验研究[J]. 湖北植保,2018,(04):8-9+56.

[70] Guilger-Casagrande M,Germano-Costa T,Pasquoto-Stigliani T,et al. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum[J] Scientific Reports,2019,9(1):43-51.

[71] Abdullah M T,Ali N Y,Suleman P. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens[J]. Crop Protection,2008,27(10):1354-1359.

[72] Sood M,Kapoor D,Kumar V,et al. Trichoderma:The “secrets” of a multitalented biocontrol agent[J]. Plants,2020,9(6):762.

[73] 罗军,杨蓉,黄蕾蕾,等. 木霉菌对莴苣菌核病防治效果研究[J]. 南方农业学报,2020,51(12):2962-2970.

[74] 李银水,廖星,谢立华,等. 哈茨木霉TRI-5腐解油菜菌核及其施用方法[J]. 中国油料作物学报,2017,39(03):399-403.

[75] Li Y,Qin L,Roberts D P,et al. Biological fertilizer containing Bacillus subtilis BY-2 for control of Sclerotinia sclerotiorum on oilseed rape[J]. Crop Protection,2020,138:105340

[76] Kamal M;Lindbeck K;Savocchia S,et al. Biological control of sclerotinia stem rot of canola using antagonistic bacteria[J]. Plant Pathology;2015;64(6):1375-1384.

[77] Farzand A,Moosa A,Zubair M,et al. Transcriptional profiling of diffusible lipopeptides and fungal virulence genes during Bacillus amyloliquefaciens EZ1509-mediated suppression of Sclerotinia sclerotiorum[J]. Phytopathology,2020,110(2):317-326.

[78] Teixeira G M,Mosela M,Nicoletto M L A,et al. Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490[J]. Frontiers in Microbiology,2021,11:618415.

[79] Ribeiro I D A,Bach E,Da Silva Moreira F,et al. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots[J]. Microbiological Research,2021,248:126754.

[80] Aeron A,Dubey R,Maheshwari D,et al. Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.)[J]. European Journal of Plant Pathology,2011,131:81-93.

[81] 张一名,李小娟,王颖,等. 抑制向日葵核盘菌菌核形成的生防菌S-16的鉴定及其生防作用研究[J]. 中国生物防治学报,2014,30(01):121-127.

[82] 卢占慧,周如军,袁月,等. 人参内生拮抗细菌分离、鉴定及其对人参菌核病抑菌作用研究[J]. 中国植保导刊,2016,36(03):5-10.

[83] 王双龙,郑丽宁,何海涛,等. 贝莱斯芽孢杆菌W24鉴定及对大豆菌核病的抑制作用研究[J/OL]. 吉林农业大学学报:1-15. [2024-05-09]. http://kns.cnki.net/kcms/detail/22.1100.S.20230620.0901.002.html.

[84] 于婷,潘金菊,车亚莉,等. BSH-4菌株对黄瓜菌核病的防治作用及其鉴定[J]. 植物病理学报,2009,39(04):425-430.

[85] 王晓. 荧光假单胞菌DH09生防菌剂的制备及其对油菜菌核病的防效研究[J]. 中国植保导刊,2011,31(10):41-43.

[86] Gebily D A,Ghanem G A,Ragab M M,et al. Characterization and potential antifungal activities of three Streptomyces spp. as biocontrol agents against Sclerotinia sclerotiorum (Lib.) de Bary infecting green bean[J]. Egyptian Journal of Biological Pest Control,2021,31:1-15.

[87] Chen X,Pizzatti C,Bonaldi M,et al. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes[J]. Frontiers in Microbiology,2016,7:714.

[88] Liu D,Yan R,Fu Y,et al. Antifungal,plant growth-promoting,and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2[J]. Frontiers in Microbiology,2019,10:2077.

[89] Yang M,Zhang W,Lv Z,et al. Evaluation of the inhibitory effects of Wuyiencin,a secondary metabolite of Streptomyces albulus CK-15,against Sclerotinia sclerotiorum in vitro[J]. Plant Disease,2022,106(1):156-164.

[90] 曾洪梅,石义萍,刘泽银,等. 防治油菜菌核病农抗2-16研究初报[J]. 中国抗生素杂志,1998,(02):82.

[91] 葛优优,刘晓瑜,窦桂铭,等. 内生链霉菌SSD49的抑菌活性和防病促生效果[J]. 生物技术通报,2017,33(06):121-127.

[92] 谭海军. 中国生物农药的概述与展望[J]. 世界农药,2022,44(04):16-27+54.

[93] 于平儒,蒋继宏. 28种植物样品提取物离体抑菌作用测定[J]. 徐州师范大学学报(自然科学版),003,(04):43-45.

[94] 谷少伟,向伟,周兵,等. 麻黄提取物中抑制桑椹肥大性菌核病病原菌的活性成分分离鉴定[J]. 蚕业科学,2015,41(05):833-838.

[95] 梁杨,徐立,马晓敏,等. 对桑椹肥大性菌核病菌具有抑制活性的中草药筛选[J]. 蚕业科学,2011,37(02):187-192.

[96] Boland G J. Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology,1992,14(1):10-17.

[97] Yu X,Li B,Fu Y,et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus[J]. Proceedings of the National Academy of Sciences,2010,107(18):8387-8392.

[98] Zhang H,Xie J,Fu Y,et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement[J]. Molecular Plant,2020,13(10):1420-1433.

[99] 方中达. 植病研究方法[M]. 北京:中国农业出版社,1998.

[100] 刘士旺. 真菌形态的几种观察方法[J]. 生物学通报,1998,(10):47.

[101] 臧宪朋,徐幼平,蔡新忠. 一种基于菌丝悬浮液的核盘菌(Sclerotinia sclerotiorum)接种方法的建立[J]. 浙江大学学报(农业与生命科学版),2010,36(04):381-386.

[102] 郭鹏豪,刘秀丽,崔颖鹏,等. 真菌通用引物ITS1和ITS4在丝状真菌鉴定中的价值评价[J]. 中国微生态学杂志,2013,25(8):922-924.

[103] Vilgalys R,Cubeta M. Molecular systematics and population biology of Rhizoctonia[J]. Annual Review of Phytopathology,1994,32(1):135-155.

[104] Nguyen L T,Schmidt H A,Von Haeseler A,et al. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution,2015,32(1):268-274.

[105] Kalyaanamoorthy S,Minh B Q,Wong T K F,et al. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nature Methods,2017,14(6):587-589.

[106] 侯颖,辛赫文,张馨,等. 河南省小麦假禾谷镰孢菌对氟环唑的敏感性[J]. 植物病理学报,2023,53(02):307-316.

[107] 徐汉虹. 植物化学保护学实验指导第二版[M]. 北京:中国农业出版社,2012.

[108] 田书鑫,刘南南,王桂清. 对峙培养法在生防菌抑制效果研究中的应用[J]. 河南农业科学,2019,48(08):1-6.

[109] 朱启寒,何剑鹏,张晓阳,等. 莴笋链格孢叶斑病病原鉴定及室内生防菌剂筛选[J]. 江西农业大学学报,2023,45(02):395-403.

[110] 吴威,刘世禹,王诗语,等. 白术内生细菌AM14的分离鉴定及其对宿主根腐病的防效研究[J]. 中草药,2021,52(10):3075-3080.

[111] 李婧婷,木霉菌和杀菌剂协同防治北苍术根腐病和白绢病研究[D]. 秦皇岛:河北科技师范学院,2022.

[112] Ikeda S,Hosoya T. Re-identification of pathogen of bulb black rot of lilies based on DNA barcoding and infection studies[J]. Journal of General Plant Pathology,2021,87:138-147.

[113] Xu Z,Harrington T C,Gleason M L,et al. Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera[J]. Mycologia,2010,102(2):337-346.

[114] Pape H. Untersuchungen über das “Schwarzwerden” der Maiblumenkeime[J]. Angew Bot,1943,25:29-54.

[115] Wakaida M,Nakata T,Kawakami H,et al. Studies on bulb black rot (Kurogusare-kinkaku-byo) of gold-banded lily (in Japanese)[J]. Bulletin of the College of Agriculture Utsunomiya University,1971,8:7-14.

[116] Ikeda S,Shimizu M. Occurrence of bulb black rot on edible lily (Lilium lancifolium) in Hokkaido (in Japanese)[J]. Annual Report of the Society of Plant Protection of North Japan,2006,(57):53-55.

[117] 王聪浩. 西洋参菌核病病原学及综合防治技术研究[D]. 咸阳:西北农林科技大学,2022.

[118] 严百元,李戌清,张雅,等. 12种杀菌剂防控莴笋菌核病效果研究[J]. 中国植保导刊,2018,38(05):65-68.

[119] 朱丽燕,周小军,陈乐阳,等. 7种药剂防治桑果菌核病的效果[J]. 浙江农业科学,2019,60(11):1983-1984.

[120] 倪春霄,洪文英,吴燕君,等. 42.4%唑醚·氟酰胺悬浮剂对桑果菌核病的田间防效[J]. 农药,2022,61(02:132-135.

[121] 伏松平,王双全. 5种杀菌剂对冬油菜菌核病的防效研究[J]. 现代农业科技,2020,(17):85+87.

[122] 杨利娟,高苇,张春祥,等. 天津地区蔬菜菌核病菌对六种杀菌剂的敏感性检测[J]. 北方园艺,2020,(09):66-72.

[123] 冯时,孙国刚,冯志伟,等. 防治人参菌核病新型高效低毒农药室内筛选[J]. 吉林农业大学学报,2023,45(06):747-755.

[124] 黄学屏,宋昱菲,肖斌,等. 山东省不同地区蔬菜菌核病菌对四霉素的敏感性[J]. 农药学学报,2018,20(05):601-606.

中图分类号:

 S567.231    

开放日期:

 2027-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式