- 无标题文档
查看论文信息

题名:

 大豆抗胞囊线虫病种质资源鉴定与分子标记开发    

作者:

 孙浩文    

学号:

 S220302058    

保密级别:

 内部    

语种:

 chi    

学科代码:

 095131    

学科:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 东北农业大学    

院系:

 农学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 大豆种质资源鉴定与抗病育种    

导师姓名:

 韩英鹏    

导师单位:

 东北农业大学    

第二导师姓名:

 李灿东    

完成日期:

 2024-03-01    

答辩日期:

 2024-05-28    

外文题名:

 Identification of Soybean Germplasm with Resistance to Soybean Cyst Nematode and Molecular Marker Development    

关键词:

 大豆胞囊线虫 ; 种质资源 ; 分子标记 ; 分子标记辅助选择    

外文关键词:

 Soybean cyst nematode ; Germplasm resource ; Molecular marker ; Molecular marker assisted selection    

摘要:

摘  要

 

大豆是一种重要的油料作物,具有丰富的营养价值,在食品加工、饲料生产等诸多领域存在重要应用。大豆胞囊线虫病(Soybean Cyst Nematode,简称SCN)是一种严重危害大豆生长的病害,尽管国内外对大豆胞囊线虫病进行了详尽的研究,但抗病种质资源的筛选及育种利用仍是防治大豆胞囊线虫病最经济有效的措施之一,然而长期使用单一抗病品种很容易造成抗性丧失,因此筛选新的抗源及开发其分子标记,对于推动我国抗大豆胞囊线虫病分子辅助育种具有重要意义。

本研究对306份大豆材料进行SCN 3号生理小种田间表型鉴定,筛选优良抗病材料,并结合重测序数据进行全基因组关联分析,筛选与大豆抗SCN 3号生理小种相关的QTL位点,根据获得的QTL位点挖掘候选基因,并进一步对候选基因优异变异位点进行筛选与分析,针对重点候选基因优异变异位点进行分子标记开发,为大豆抗胞囊线虫病分子辅助育种提供理论依据和技术支持。主要研究结果如下:

(1)对306份大豆材料进行田间表型鉴定,结果表明被测材料雌虫指数变异范围为0-1.5,平均值为27.91,标准差为29.20,变异系数为1.07,不同试验材料间遗传差异较大,获得33份高抗材料,包括抗线3号、抗线虫5、中品03-5373等,表型变异基本符合正态分布。

(2)通过全基因组关联分析,筛选到130个大豆抗SCN 3号生理小种相关的QTL位点;这些位点主要分布于Chr.03、Chr.06、Chr.08、Chr.15、Chr.18和Chr.19等8条染色体上。

(3)基于显著关联的QTL位点信息,将117个大豆抗SCN 3号生理小种相关的候选基因作为潜在的候选基因,部分候选基分别为RING泛素连接酶家族、富含亮氨酸的重复蛋白激酶家族蛋白、含有NB-ARC结构域的抗病蛋白等,其广泛参与植物的非生物与生物胁迫反应;还有部分候选基因功能与生物体内信号转导和代谢途径相关。

(4)采用40份极端抗病和感病代表材料结合其深度测序数据进行候选基因关联分析,进一步确认这些候选基因与抗性之间的关系,最终确定了5个与目标性状呈显著或极显著相关重点候选基因,包括Glyma.19G051500、Glyma.19G052400、Glyma.19G052200、Glyma.19G051900和Glyma.19G052100等,并针对这5个候选基因的8个SNP位点进行分子标记开发。

(5)基于Glyma.19G051500-rs8382716、Glyma.19G052400-rs8522589、Glyma.19G051900-rs8466511和Glyma.19G052100-rs8481473,设计进行了CAPS标记开发,这4个标记在分型材料中对抗病材料选择效率分别为71.26%、70.30%、72.81%和71.62%,这些CAPS标记可为大豆抗胞囊线虫病分子辅助选择提供有力工具。

(6)基于Glyma.19G052400-rs8522772和Glyma.19G051500-rs8384176,设计进行KASP标记开发,这两个KASP标记在分型材料中对抗病材料的选择效率分别为69.34%和70.81%,基于Glyma.19G052100-rs8481458和Glyma.19G052200-rs8505580,设计进行多重PCR分子标记开发,两个标记在分型材料中对抗病材料选择效率为别为70.71%和69.23%,这为进一步大豆胞囊线虫病分子辅助选育提供了实用化工具。

本研究筛选出33份高抗材料,开发了4个CAPS分子标记、2个KASP分子标记和2个多重PCR标记,这为大豆抗胞囊线虫病分子辅助育种的实现提供了技术路径。

外摘要要:

Abstract

 

Soybean was an important oilseed crop with rich nutritional value, it has important applications in a number of areas, including food processing and feed production. Soybean cyst nematode (SCN) was a disease, which severely affected the growth of soybeans. Although exhaustive research on SCN were conducted worldwide, screening of disease-resistant germplasm and breeding remained one of the most cost-effective measures for the prevention and control of SCN. Additionally, the long-term utilization of a single resistant variety would easily result in the loss of resistance. So, the screening of resistance germplasm and the development of their molecular markers were of great significance in promoting molecular-assisted breeding (MAS) for resistance to SCN in China.

In this study, a total of 306 soybean materials were used to evaluate their resistance to SCN race 3 in the field condition. and excellent disease-resistant materials were screened, QTL related with soybean resistance to SCN race 3, were obtained through genome-wide association analysis, and the candidate genes were mined according to the obtained QTL, excellent mutation QTL were further screened and analyzed to obtain the candidate genes with resistance to SCN, molecular markers were developed for application of molecular-assistant breeding of soybean, which provided theoretical basis and technical support for the futural breeding utilization. The main results were as followed:

(1) The SCN resistance of 306 soybean materials were conducted in the field condition, the results showed that the variation range of the female index of the tested materials was 0-1.5, the mean value was 27.91, the standard deviation was 29.20, and the coefficient of variation was 1.07, with a large genetic difference between different test materials. A total of 33 high-resistance materials were obtained, including Kang xian3, Kang xian5 and Zhong pin 03-5373. The phenotypic variation basically fitted in a normal distribution.

(2) A total of 130 QTL significantly associated with soybean resistance to SCN race 3 based on genome-wide association analysis, these QTL mainly distributed on eight chromosomes,including Chr.03,Chr.06,Chr.08,Chr.15,Chr.18 and Chr.19.

(3) Based on the significantly associated QTL, a total of 117 candidate genes related to soybean resistance to SCN race 3were considered as potential candidate genes, which included RING ubiquitin ligase family, leucine-rich repeat protein kinase family proteins, disease resistance proteins containing NB-ARC structural domains, etc. which are widely involved in abiotic and biotic stress responses in plants; and some of the candidate genes were related to signal transduction and metabolic pathways in organisms.

(4) Candidate gene association analysis was used to perform using resequencing data from 40 extremely resistant and susceptible representative materials to further confirm the relationship between these candidate genes and SCN race 3 resistances. Five candidate genes with significant or highly significant correlation with the target traits were finally identified, including Glyma.19G051500, Glyma.19G052400, Glyma.19G052200, Glyma.19G051900 and Glyma.19G052100, and molecular marker development were carried out for the eight SNPs of these five candidate genes.

(5) CAPS marker development was carried out based on the Glyma.19G051500-rs8382716、Glyma.19G052400-rs8522589、Glyma.19G051900-rs8466511 and Glyma.19G052100-rs8481473. The screening efficiencies of the four markers for disease-resistant materials in the typed materials were 71.26%, 70.30%, 72.81% and 71.62%, respectively, and these CAPS markers can provide a powerful tool for MAS for SCN resistance in soybean.

(6) The development of KASP markers based on excellent variant alleles at the 2 Glyma.19G052400-rs852277 and Glyma.19G051500-rs8384176, the screening efficiencies of these two KASP markers for the disease resistant materials in the typed materials were 69.34% and 70.81%, respectively. Multiplex PCR molecular markers were developed for Glyma.19G052100- rs8481458 and Glyma.19G052200-rs8505580. The screening efficiencies of the two markers for disease-resistant materials in the typed materials were 70.71% and 69.23%, respectively, which provided practical tools for further MAS for SCN in soybean.

In this study, a total of 33 high-resistance materials were screened, and four CAPS molecular markers, two KASP molecular markers and two multiplex PCR markers were developed, which provided a technical pathway for the realization of MAS for soybean cyst nematode.

参考文献:

[1] 陈慧. 大豆发展现状及对策分析[J]. 南方农业,2022,16(02):179-181.

[2] Arjoune Y,Sugunaraj N,Peri S,et al. Soybean cyst nematode detection and management:a review[J]. Plant Methods,2022,18(1):110.

[3] Abad P,Williamson V M. Plant nematode interaction:a sophisticated dialogue[J]. Advances in Botanical Research,2010,53:147-192.

[4] Wrather J A,Koenning S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Journal of Nematology,2006,38(2):173-80.

[5] 任卫东. 大豆胞囊线虫病的发生及防治[J]. 现代农业科技,2012,(21):155+158.

[6] 彭德良. 植物线虫病害:我国粮食安全面临的重大挑战[J]. 生物技术通报,2021,37(07):1-2.

[7] 李沐慧,王媛媛,陈井生,等. 2015年东北地区大豆田病害种类与危害程度调查研究[J]. 大豆科学,2016,35(04):643-648+671.

[8] Bent A F. Exploring soybean resistance to soybean cyst nematode[J]. Annual Review of Phytopathology,2022,60:379-409.

[9] 刘维志. 植物病原线虫学[M]. 中国出版社,2000.

[10] Riggs R D,Wrather J A. Biology and management of the soybean cyst nematode[M]. Biology and management of the soybean cyst nematode,1992.

[11] Ross J P,Brim C A. Resistance of soybeans to the soybean cyst nematode as determined by a double-row method[J]. Plant Disease Reporter,1957,41:923-924.

[12] Golden A M,Epps J M,Riggs R D. Terminology and identity of infraspecificforms of the soybean cyst nematode(Heterodera glycines)[J]. Plant Disease Reporter,1970,54(7):544-546.

[13] Riggs R D,Schmitt D P. Optimization of the Heterodera glycines race test procedure[J]. Journal of Nematology,1991,23(2):149-54.

[14] 许艳丽,T.L.Niblack. 大豆孢囊线虫群体遗传多样性新的分类方法[J]. 大豆科学,2002,21(004):301-304.

[15] 大豆种质抗孢囊线虫鉴定研究协作组. 大豆种质资源对大豆孢囊线虫1、3和4号生理小种的抗性鉴定[J]. 大豆科学,1993(02):91-99.

[16] 邢邯,赵经荣,战明奎,等. 山东省大豆孢囊线虫生理小种的鉴定[J]. 中国油料作物学报,1997(04):61-65.

[17] 练云,王金社,李海朝,等. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查[J]. 作物学报,2016,42(10):1479-1486.

[18] 王明祖. 中国植物线虫研究[M]. 湖北科学技术出版社: 1998.

[19] 刘汉起,商绍刚,甄鸿杰,等. 黑龙江省大豆孢囊线虫(Heterod era glyicines)生理小种分布的研究[J]. 大豆科学,1995,(04):330-333.

[20] 张磊,戴瓯和,刘金梅,等. 中国大豆种质资源抗大豆孢囊线虫5号生理小种鉴定研究[J]. 大豆科学,1998,(02):78-81.

[21] 陈品三,张东生,陈森玉. 大豆孢囊线虫(Heterodera glycines)7号生理小种的研究初报[J]. 中国农业科学,1987,(02):94.

[22] 董丽民,许艳丽,李春杰,等. 黑龙江省大豆胞囊线虫胞囊密度和生理小种鉴定[J]. 中国油料作物学报,2008,(01):108-111.

[23] Niblack T L,Lambert K N,Tylka G L. A model plant pathogen from the kingdom animalia:Heterodera glycines,the soybean cyst nematode[J]. Annual Review of Phytopathology,2006,44:283-303.

[24] Niblack,T. L. Soybean cyst nematode management reconsidered[J]. Plant Disease,2007,89(10):1020-1026.

[25] Boer J,Davis E L,Hussey R S,et al. Cloning of a putative pectate lyase Gene expressed in the subventral esophageal glands of Heterodera glycines[J]. Journal of Nematology,2002,34(1):9-11.

[26] Rai K M,Balasubramanian V K,Welker C M,et al. Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes[J]. BMC Plant Biology,2015,15(1):187.

[27] Pogorelko G,Juvale P S,Rutter W B,et al. A cyst nematode effector binds to diverse plant proteins,increases nematode susceptibility and affects root morphology[J]. Molecular Plant Pathology,2016,17(6):832-844.

[28] Halbrendt J M,Lewis S A,Shipe E R. A Technique for evaluating Heterodera glycines development in susceptible and resistant soybean[J]. Journal of Nematology,1992,24(1):84.

[29] Bekal S,Domier L L,Gonfa B,et al. A novel flavivirus in the soybean cyst nematode[J]. Journal of General Virology,2014,95(Pt6):1272-1280.

[30] 孙元峰,杜海洋. 作物种子病虫害防治技术[M]. 中原农民出版社,2008.

[31] 李海燕,蔡德利,段玉玺,等. 五寨黑豆对大豆胞囊线虫3号生理小种的抗性遗传分析[J]. 大豆科学,2017,36(01):12-16.

[32] 张军,杨庆凯,王慧捷,等. 大豆孢囊线虫病研究进展及其抗病育种展望[J]. 东北农业大学学报,2002,(04):384-390.

[33] 华萃. 大豆孢囊线虫致病性变异及趋化性研究[D]. 2018.

[34] 朱艳,陈立杰,段玉玺. 不同耕作方式对大豆胞囊线虫群体数量的影响[J]. 大豆科学,2007,(02):208-212.

[35] Jensen J P,Kalwa U,Pandey S,et al. Avicta and Clariva Affect the Biology of the Soybean Cyst Nematode,Heterodera glycines[J]. Plant Disease,2018,102(12):2480-2486.

[36] 孙漫红,刘杏忠,缪作清. 大豆胞囊线虫病生物防治研究进展[J]. 中国生物防治,2000,(03):136-141.

[37] Jin N,Liu S M,Peng H,et al. Isolation and characterization of aspergillus niger NBC001 underlying suppression against Heterodera glycines[J]. Scientific Reports,2019,9(1):591.

[38] 孟凡立,于瑾瑶,李春杰,等. 东北地区大豆孢囊线虫病发生和防控技术研究进展[J]. 东北农业大学学报,2022,53(01):87-94.

[39] 田丰. 费氏中华根瘤菌Sneb183防控大豆胞囊线虫病机理研究[D]. 2014.

[40] 颜清上,王连铮,常汝镇. 大豆孢囊线虫病抗源筛选和利用研究概述[J]. 大豆科学,1997,(02):71-76.

[41] Ross J P,Brim C A. Resistance of soybeans to the soybean cyst nematode as determined by a double-row method[J]. Plant Disease Reporter,1957,41(12):923-924.

[42] Anand S C. Soybean genotypes with resistance to race of soybean cyst nematode[J]. Crop Science,1985,25:1073-1075.

[43] Anand S C. Soybean plant introductions with resitance to race 4 or 5 of soybean cyst nematode[J]. Crop Science,1988,28(3):563-564.

[44] Young L D. Soybean germplasm evaluated for resistance to race 3,5 and 14 of soybean cyst nematode[J]. Crop Science,1990,30(2):735-736.

[45] Epps J M,Hartwig E E. Reaction of soybean varieties and strains to race 4 of the soybean cyst nematode[J]. Journal of Nematology,1972,4(4):222.

[46] Arelli P R,Mengistu A,Nelson R L,et al. New soybean accessions evaluated for reaction to Heterodera glycines populations[J]. Crop Science,2015,55:1236-1242.

[47] Rao-Arelli A P,Wrather J A,Anand S C. Genetic diversity among isolates of Heterodera gly cines and sources of resistance in soybeans[J]. Plant Disease,1992,76(9):894-896.

[48] Young L D. Soybean germplasm resistance to race 3,5 and 14 of the soybean cyst nematode[J]. Crop Science,1995,35(3):895-896.

[49] 郑延海,闫世纯. 大豆胞囊线虫生理小种的鉴定及大豆种质资源对其抗性的评价[J]. 植物保护,1997,(04):31-32.

[50] 李明姝,于维,曲红彤,等. 大豆种质资源对大豆胞囊线虫3号生理小种的抗性评价[J]. 大豆科学,2017,36(05):778-781+788.

[51] 曹广禄,赵雪,王强,等. 大豆种质资源对胞囊线虫病1号、3号和4号生理小种的抗性鉴定[J]. 大豆科学,2014,33(04):563-565.

[52] 李泽宇,李肖白,陈井生,等. 大豆品种(系)抗大豆胞囊线虫14号生理小种的抗性鉴定研究[J]. 大豆科学,2014,33(03):408-410.

[53] 孔祥超,李红梅,耿甜,等. 大豆种质资源对大豆孢囊线虫3号和4号生理小种的抗性鉴定[J]. 植物保护,2012,38(01):146-150.

[54] 刘树森,杨巧,简恒. 大豆种质资源对大豆孢囊线虫的抗性评价[J]. 植物病理学报,2015,45(03):317-325.

[55] 高国金,周长军,杜志强,等. 抗线虫大豆品种对大豆胞囊线虫生理小种演变的选择作用及育种思路[J]. 大豆通报,2005,(01):15-17.

[56] Niblack T L,Colgrove A L,Colgrove K. Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788[J]. Plant Health Progress,2007,9:29.

[57] 徐江源,高华伟,邱丽娟. 我国库存大豆资源表型和基因型数据库构建[C]//第二十届中国作物学会学术年会,2023:1.

[58] Vuong T D,Sleper D A,Shannon J G,et al. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C[J]. Theoretical and Applied Genetics,2010,121(7):1253-1266.

[59] Emerson J J,Li W H. The genetic basis of evolutionary change in gene expression levels[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2018,365(1552):2581-2590.

[60] St-Amour V T B,Mimee B,Torkamaneh D,et al. Characterizing resistance to soybean cyst nematode in PI 494182,an early maturing soybean accession[J]. Crop Science,2020,60(4):2053-2069.

[61] Liu X,Liu S,Jamai A,et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene[J]. Functional & Integrative Genomics,2011,11(4):539-549.

[62] Liu S,Kandoth P K,Lakhssassi N,et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J]. Nature Communications,2017,8:14822.

[63] Yang L,Tian Y,Liu Y,et al. QTL mapping of qSCN3-1 for resistance to soybean cyst nematode in soybean line zhongpin 03-5373[J]. The Crop Journal,2021,9(2):351-359.

[64] Borevitz J O,Nordborg M. The impact of genomics on the study of natural variation in Arabidopsis[J]. Plant Physiology,2003,132(2):718-725.

[65] Zhou Z,Zhang C,Zhou Y,et al. Genetic dissection of maize plant architecture with an ultra-highdensity bin map based on recombinant inbred lines[J]. BMC Genomics,2016,17(1):178.

[66] Han Y,Zhao X,Cao G,et al. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping[J]. BMC Genomics,2015,16(1):1-11.

[67] Zhao X,Teng W,Li Y,et al. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7[J]. BMC Genomics,2017,18(1):462.

[68] Zhang H,Li C,Davis E L,et al. Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5.7 in wild soybean (Glycine soja)[J]. Frontiers in Plant Science,2016,7:1214.

[69] Cook D E,Lee T G,Guo X,et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science,2012,338(6111):1206-1209.

[70] Bayless A M,Smith J M,Song J,et al. Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1[J]. Proceedings of the National Academy of Sciences,2016,113(47):E7375-E7382.

[71] Liu S,Kandoth P K,Warren S D,et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature,2012,492(7428):256-260.

[72] Guo W,Zhang F,Bao A,et al. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode[J]. Molecular Plant Pathology,2019,20(2):270-286.

[73] Afzal A J,Srour A,Goil A,et al. Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/RFS2 underlying resistance to two soybean pathogens[J]. BMC Plant Biology,2013,13:43.

[74] Risch N,Merikangas K. The future of genetic studies of complex human diseases[J]. Science,1996,273(5281):1516-1517.

[75] Brachi B,Morris G,Borevitz J. Genome-wide association studies in plants:the missing heritability is in the field[J]. Genome Biology,2011,12:232.

[76] Donnelly P. Progress and challenges in genome-wide association studies in humans[J]. Nature,2008,456:728-731.

[77] Zhang Y W,Tamba C L,Wen Y J,et al. mrMLM v4.0.2:an R platform for multi-locus Genome-wide association studies[J]. Genomics Proteomics Bioinformatics,2020,18(4):481-487.

[78] Wang J, Zhang Z. GAPIT version 3:Boosting power and accuracy for genomic association and prediction[J]. Genomics Proteomics Bioinformatics,2021,19(4):629-640.

[79] Bradbury P J,Zhang Z,Kroon D E,et al. TASSEL:software for association mapping of complex traits in diverse samples[J]. Bioinformatics,2007,23(19):2633-2635.

[80] Wang M,Yan J,Zhao J,et al. Genome-wide association study (GWAS) of resistance to head smut in maize[J]. Plant Science,2012,196:125-131.

[81] Wu J,Feng F,Lian X,et al. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice[J]. BMC Plant Biology,2015,15:218.

[82] Zhou Y,Tang H,Cheng M P,et al. Genome-wide association study for pre-harvest sprouting resistance in alarge germplasm collection of Chinese wheat landraces[J]. Frontiers in Plant Science,2017,8:401.

[83] Schmutz J,Cannon S B,Schlueter J,et al. Genome sequence of the palaeopolyploid soybean[J]. Nature,2010,463(7278):178-183.

[84] Song Q,Hyten D L,Jia G,et al. Development and evaluation of SoySNP50K,a high-density genotyping array for soybean[J]. Public Library of Science ONE,2013,8(1):e54985.

[85] Chang F,Guo C,Sun F,et al. Genome-wide association studies for dynamic plant height and number of nodes on the main stem in summer sowing soybeans[J]. Frontiers in Plant Science,2018,9:1184.

[86] Do T D,Vuong T D,Dunn D,et al. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping[J]. BMC Genomics,2019,20(1):318.

[87] Dhanapal A P,Ray J D,Singh S K,et al. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes[J]. Theoretical and Applied Genetics,2015,128(1):73-91.

[88] Tran D T,Steketee C J,Boehm J D,et al. Genome-wide association analysis pinpoints additional major genomic regions conferring resistance to soybean cyst nematode (Heterodera glycines Ichinohe)[J]. Frontiers in Plant Science,2019,10:401.

[89] Hwang E Y,Song Q,Jia G,et al. A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics,2014,15:1.

[90] Chu S,Wang J,Zhu Y,et al. An R2R3-type MYB transcription factor,GmMYB29,regulates isoflavone biosynthesis in soybean[J]. Plos Genetics,2017,13(5):e1006770.

[91] 陈星,高子厚. DNA分子标记技术的研究与应用[J]. 分子植物育种,2019,17(06):1970-1977.

[92] Agarwal M,Shrivastava N,Padh H. Advances in molecular marker techniques and their applications in plant sciences[J]. Plant Cell Reports,2008,27(4):617-631.

[93] Baloch F S,Altaf M T,Liaqat W,et al. Recent advancements in the breeding of sorghum crop:current status and future strategies for marker-assisted breeding[J]. Frontiers in Genetics,2023,14:1150616.

[94] 徐小万,雷建军,罗少波,等. 作物基因聚合分子育种[J]. 植物遗传资源学报,2010,11(03):364-368.

[95] 林菁华. 作物分子育种的原理、方法及应用前景[J]. 河南农业,2013,(15):64.

[96] Botstein D,White R L,Skolnick M,et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,1980,32(3):314-331.

[97] Barnes S R. RFLP analysis of complex traits in crop plants[J]. Symposia of the Society for Experimental Biology,1991,45:219-228.

[98] Konieczny A,Ausubel F M. A procedure for mapping arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. Plant Journal,1993,4(2):403-410.

[99] Caranta C,Thabuis A,Palloix A. Development of a CAPS marker for the Pvr4 locus:a tool for pyramiding potyvirus resistance genes in pepper[J]. Genome,1999,42(6):1111-1116.

[100] He C,Holme J,Anthony J. SNP genotyping:the KASP assay[J]. Methods in Molecular Biology,2014,1145:75-86.

[101] Alvarez-Fernandez A,Bernal M J,Fradejas I,et al. KASP:a genotyping method to rapid identification of resistance in plasmodium falciparum[J]. Malaria Journal,2021,20(1):16.

[102] Semagn K,Babu R,Hearne S,et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP):overview of the technology and its applicationincrop improvement[J]. Molecular Breeding,2014,10(1):1-14.

[103] 易汪雪. 利用多重PCR一次检测侵染大豆的几种检疫性病毒及大豆内源基因的研究[D]. 2011.

[104] Wen D,Zhang C. Universal Multiplex PCR:a novel method of simultaneous amplification of multiple DNA fragments[J]. Plant Methods,2012,8(1):32.

[105] 史学晖,李英慧,于佰双,等. 大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用[J]. 作物学报,2015,41(10):1463-1471.

[106] 田宇,杨蕾,李英慧,等. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报,2018,44(11):1600-1611.

[107] 张颖. 大豆核不育基因ms6的定位、克隆及功能性分子标记开发[D]. 2021.

[108] 刘谢香. 大豆苗期耐盐基因GmSALT3标记开发利用及出苗期耐盐QTL发掘[D]. 2019.

[109] 陆亮. 中国栽培大豆籽粒油脂性状的遗传变异及油脂代谢相关基因GmDGK7和GmTPR的分子标记开发[D]. 2015.

[110] Bybd D W,Kirkpatrick T,Barker K R. An improved technique for clearing and staining plant tissues for detection of nematodes[J]. Journal of Nematology,1983,15(1):142-143.

[111] Riggs R D,Schmitt D P. Complete characterization of the race scheme for Heterodera glycines[J]. Journal of Nematology,1988,20(3):392-395.

[112] 齐军山,李长松,李林,等. 大豆胞囊线虫生理小种及其鉴定技术[J]. 中国油料作物学报,2000,(04):72-75.

[113] 马岩松. 中国抗大豆胞囊线虫病种质遗传多样性及中美大豆抗病基因构型的研究[D]. 2005.

[114] 张玉华,马书君. 我国大豆种质资源对大豆孢囊线虫3号生理小种的抗性鉴定研究[J]. 作物品种资源,1996,(04):38-39.

[115] 马书君,张玉华,薛庆喜,等. 中国大豆种质资源对大豆孢囊线虫3号生理小种抗性鉴定研究[J]. 大豆科学,1996,(02):97-102.

[116] 南海洋. 大豆胞囊线虫抗病候选基因rhg1多样性及分子标记开发与利用[D]. 2010.

[117] 田中艳,李肖白,高国金,等. 黑龙江省抗孢囊线虫大豆品种选育概况及育种目标[J]. 大豆通报,2002,(06):16-23.

[118] Mitchum M G. Soybean resistance to the soybean cyst nematode Heterodera glycines:an update[J]. Phytopathology,2016,106(12):1444-1450.

[119] 高国金,王明泽,周长军,等. 抗线虫5号大豆的选育及栽培技术[J]. 大豆通报,2004,(04):12-15.

[120] 刘章雄,卢为国,常汝镇,等. 大豆抗胞囊线虫4号生理小种的种质创新[J]. 大豆科学,2008,27(06):911-914.

[121] 王明泽,田中艳,李云辉,等. 大豆“抗线虫3号”的选育及栽培技术[J]. 大豆通报,2002,(05):19.

[122] 任生林,吴才文,经艳芬,等. 全基因组关联分析在作物中的研究进展[J]. 分子植物育种:1-18.

[123] 李廷雨,黎永力,甘卓然,等. 全基因组关联分析在大豆中的研究进展[J]. 大豆科学,2020,39(03):479-484.

[124] Aranzana M J,Kim S,Zhao K,et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. Plos Genetics,2005,1(5):e60.

[125] 狄邺. 利用全基因组关联分析挖掘玉米苗期淹水相关性状的候选基因[D]. 2023.

[126] 刘丽华,刘阳娜,周悦,等. 基于高效SNP芯片的小麦产量相关性状全基因组关联分析[J]. 麦类作物学报,2023,43(11):1404-1416.

[127] 牛鹏威,刘英,罗继景. 水稻细菌性条斑病抗性位点的全基因组关联分析[J]. 基因组学与应用生物学,2022,41(02):344-351.

[128] Ravelombola W,Qin J,Shi A,et al. Genome-wide association study and genomic selection for yield and related traits in soybean[J]. Public Library of Science ONE,2021,16(8):e0255761.

[129] Yue P,Arelli P R,Sleper D A. Molecular characterization of resistance to Heterodera glycines in soybean PI438489B[J]. Theoretical and Applied Genetics,2001,102:921-928.

[130] Concibido V C,Diers B W,Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean[J]. Crop Science,2004,44(4):1121-1131.

[131] Patil G B,Lakhssassi N,Wan J,et al. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode[J]. Plant Biotechnology Journal,2019,17(8):1595-1611.

[132] Ferreira M,Cervigni G,Ferreira A,et al. QTLs for resistance to soybean cyst nematode,races 3,9,and 14 in cultivar Hartwig[J]. Pesquisa Agropecuaria Brasileira,2011,46(4):420-428.

[133] Deyoung B J,Innes R W. Plant NBS-LRR proteins in pathogen sensing and host defense[J]. Nature Immunology,2006,7(12):1243-1249.

[134] Shanmugam V. Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms[J]. Microbiological Research,2005,160(1):83-94.

[135] Sidonskaya E,Schweighofer A,Shubchynskyy V,et al. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases,which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis[J]. Journal of Experimental Botany,2016,67(1):107-118.

[136] Ngou B P M,Heal R,Wyler M,et al. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes[J]. Nature Plants,2022,8(10):1146-1152.

[137] Bai J,Zhou Y,Sun J,et al. BIK1 protein homeostasis is maintained by the interplay of different ubiquitin ligases in immune signaling[J]. Nature Communications,2023,14(1):4624.

[138] Craig A,Ewan R,Mesmar J,et al. E3 ubiquitin ligases and plant innate immunity[J]. Journal of Experimental Botany,2009,60(4):1123-1132.

[139] 姜海鹏,田力峥,卜凡珊,等. 大豆胞囊线虫病抗性相关bZIP转录因子的生物信息学分析[J]. 大豆科学,2020,39(05):703-711.

[140] Chugh V,Kaur D,Purwar S,et al. Applications of molecular markers for developing abiotic-stress-resilient oilseed crops[J]. Multidisciplinary Digital Publishing Institute,2022,13(1):88.

[141] 张东辉,史国敏. 分子标记在大豆遗传育种中的实践[J]. 山西农业科学,2017,45(08):1381-1383.

[142] 娄雪. 野生大豆抗胞囊线虫病相关SNP标记的开发及其辅助选择[D]. 2016.

中图分类号:

 S565.1    

开放日期:

 2027-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式