- 无标题文档
查看论文信息

题名:

 GmM28调控大豆种子蛋白油分含量的分子机制研究    

作者:

 孙佳    

学号:

 S210301047    

保密级别:

 内部    

语种:

 chi    

学科代码:

 090102    

学科:

 农学 - 作物学 - 作物遗传育种    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 东北农业大学    

院系:

 农学院    

专业:

 作物遗传育种    

导师姓名:

 齐照明    

导师单位:

 东北农业大学    

完成日期:

 2024-06-02    

答辩日期:

 2024-05-22    

外文题名:

 The Molecular Mechanism Study of the Quality and Yield Control Gene GmM28 in Soybean    

关键词:

 大豆 ; GmM28 ; 品质 ; 产量 ; 驯化    

外文关键词:

 Soybean ; GmM28 ; Quality ; Yield ; Domestication    

摘要:

大豆种子富含油脂和蛋白质,是人类和动物重要的蛋白质和油脂来源。随着我国对大豆需求量的增加,如何在耕地面积有限的情况下提高大豆品质和产量已成为亟待解决的问题。挖掘与品质性状相关的新基因并阐明其作用机制,对培育优质大豆品种具有重要意义。本课题组前期经Meta分析和转录组测序获得了与子粒蛋白油分合成通路相关的hub基因GmM28,并利用遗传转化获得该基因的转基因大豆植株。在此基础上,本研究完成了大豆稳转植株的品质和产量性状的表型鉴定,利用扫描电子显微镜对GmM28转基因成熟子粒进行细胞形态比较;利用多重组学联合分析,探究了GmM28的大豆蛋白和油分含量调控途径;利用2898份大豆种质资源群体分析GmM28的驯化特征并挖掘GmM28的优异单倍型。主要研究结果如下:

品质和产量性状表型分析:对T3、T4代GmM28转基因大豆子粒进行蛋白和油分含量测定,发现gmm28蛋白含量平均降低1.21%,总脂肪酸含量平均升高1.24%,GmM28OE蛋白含量平均升高1.96%,总脂肪酸含量平均降低1.92%。透射电镜的结果显示,与对照组和GmM28OE相比,gmm28成熟子粒中的蛋白体更小,油体排列更紧密。以上结果表明GmM28同时控制油分含量和蛋白含量。另外,对T3、T4代GmM28转基因大豆植株进行产量相关表型统计,结果表明GmM28OE植株的粒长、粒宽、百粒重和株高相比DN50都显著增加。

GmM28的细胞形态学分析:通过扫描电镜对GmM28转基因成熟子粒进行细胞学形态观察和统计。与对照DN50相比,gmm28的细胞数量和细胞面积分别降低了20.93%、2.99%,而GmM28OE的细胞数目和面积分别增加了4.27%、10.43%,这些结果表明,GmM28可能通过影响细胞面积和细胞数量共同调控粒重和子粒大小。

GmM28的多组学联合分析:基于GmM28转基因大豆植株的IP-MS/MS、转录组学和代谢组学(脂质)联合分析,发现GmM28可能是通过参与调控蛋白质、脂肪酸生物合成途径控制油分含量和蛋白含量的,同时根据测序数据的表达模式分析筛选了77个基因和10个代谢离子作为GmM28的调控靶基因。此外,通过对RNA-seq得到的差异表达基因进行表达模式分析,发现GmM28可以通过调节17个大豆品质和产量基因的表达控制蛋白含量、油分含量和粒重。并利用IP-MS/MS鉴定到的1522个蛋白,结合蛋白功能描述和有关文献分析,筛选与蛋白、油分生物合成或运输有关的GmM28候选互作蛋白。

GmM28的选择驯化和单倍型分析:利用大豆种质资源对GmM28基因ATG上游3000 bp序列进行单倍型分析,鉴定到两类GmM28单倍型GmM28Hap1和GmM28Hap2,GmM28Hap2在野生品种、地方品种和改良品种中的频率分布分别为3.00%、52.06%和73.62%,呈逐渐扩张的趋势。两个单倍型分别与脂肪酸和蛋白含量进行关联分析,发现GmM28Hap1蛋白含量高于GmM28Hap2,GmM28Hap2的油分含量高于GmM28Hap1。此外,对两个单倍型进行转录活性分析,发现GmM28Hap2的转录活性显著高于GmM28Hap1。上述结果说明在大豆选择驯化和品种改良过程中,GmM28Hap2控制的高油表型比例逐渐增加。

综上所述,本研究阐明了大豆驯化过程中GmM28基因控制大豆品质和产量性状的遗传变异机制,初步探究了GmM28的分子机制,为调控大豆子粒蛋白、油分积累的遗传机理提供了新见解,并为大豆高品质高产分子辅助育种提供理论基础。

外摘要要:

Soybean seeds are rich in oil and protein, and are an important source of protein and oil for humans and animals. With the increase of soybean demand in our country, how to improve soybean quality and yield under the condition of limited arable land has become an urgent problem to be solved. It is of great significance to explore new genes related to quality traits and elucidate their mechanisms for cultivating high-quality soybean varieties. In our research group, the hub gene GmM28, which is related to the oil synthesis pathway of grain protein, was obtained by Meta analysis and transcriptome sequencing, and transgenic soybean plants with this gene were obtained by genetic transformation. On this basis, the phenotypic characteristics of soybean stable plants were identified, and the cell morphology of GmM28 transgenic mature seeds was compared by scanning electron microscopy. The regulation of soybean protein and oil content in GmM28 was investigated by multi-recombinant analysis. Domestication characteristics of GmM28 were analyzed from 2898 soybean germplasm populations and excellent haplotypes of GmM28 were discovered. The main findings are as follows:

 Phenotypic analysis of quality and yield traits: Protein and oil content measurements of T3 and T4 generation GmM28 transgenic soybean kernels revealed that gmm28 protein content was reduced by an average of 1.21% and total fatty acid content was elevated by an average of 1.24%, while GmM28OE protein content was elevated by an average of 1.96% and total fatty acid content was reduced by an average of 1.92%. The results of transmission electron microscopy showed that the proteasomes were smaller and the oil bodies were more tightly arranged in gmm28 mature zygotes compared to controls and GmM28OE. The above results indicate that GmM28 controls both oil content and protein content. In addition, yield-related phenotyping of T3 and T4 generations of GmM28 transgenic soybean plants showed that grain length, grain width, 100-grain weight, and plant height were significantly increased in GmM28OE plants compared with DN50.

 Cytomorphologic analysis of GmM28: Cytological morphology of GmM28 transgenic mature zygotes was observed and counted by scanning electron microscopy. Compared with the control DN50, the cell number and cell area of gmm28 decreased by 20.93% and 2.99%, respectively, while the cell number and area of GmM28OE increased by 4.27% and 10.43%, respectively, and these results suggest that GmM28 may co-regulate the grain weight and zygote size by affecting the cell area and cell number.

 Multi-omics coanalysis of GmM28: Based on the combined IP-MS/MS, transcriptomics and metabolomics (lipid) analyses of GmM28 transgenic soybean plants, it was found that GmM28 may be controlling the oil content and protein content by participating in the regulation of protein and fatty acid biosynthesis pathways, and 77 genes and 10 metabolite ions were also screened as regulatory target genes of GmM28 based on the expression pattern analysis of the sequencing data. In addition, by analyzing the expression patterns of differentially expressed genes obtained by RNA-seq, it was found that GmM28 could control protein content, oil content and grain weight by regulating the expression of 17 soybean quality and yield genes. The 1522 proteins identified by IP-MS/MS were also used to screen for GmM28 candidate interacting proteins related to protein, oil biosynthesis or transport, in conjunction with protein functional descriptions and relevant literature analysis.

 Selective domestication and haplotype analysis of GmM28: Haplotype analysis of the 3000 bp sequence upstream of the ATG of the GmM28 gene using soybean germplasm resources identified two types of GmM28 haplotypes , GmM28Hap1 and GmM28Hap2, and the frequency distributions of GmM28Hap2 in the wild, local and improved varieties were 3.00%, 52.06% and 73.62%, respectively, which showed a gradually expanding trend. The two haplotypes were correlated with fatty acid and protein content respectively, and it was found that the protein content of GmM28Hap1 was higher than that of GmM28Hap2, and the oil content of GmM28Hap2 was higher than that of GmM28Hap1. In addition, transcriptional activity analysis of the two haplotypes showed that the transcriptional activity of GmM28Hap2 was significantly higher than GmM28Hap1. These results indicated that the proportion of high oil phenotypes controlled by GmM28Hap2 increased gradually during the process of soybean selection and domestication and variety improvement.

In summary, this study clarified the genetic variation mechanism of GmM28 gene controlling soybean quality and yield traits during soybean domestication, preliminarily explored the molecular mechanism of GmM28, provided new insights into the genetic mechanism of regulating soybean grain protein and oil accumulation, and provided a theoretical basis for molecular assisted breeding of soybean for high quality and high yield.

参考文献:

[1]Clemente T E,Cahoon E B. Soybean oil:genetic approaches for modification of functionality and total content[J]. Plant physiology,2009,151(3):1030-40.

[2]刘新旗,涂丛慧,张连慧,等. 大豆蛋白的营养保健功能研究现状[J]. 北京工商大学学报(自然科学版),2012,30(02):1-6.

[3]Frías E,Iglesias Y,Alvarez-Ordóñez A,et al. Evaluation of cold atmospheric pressure plasma(CAPP) and plasma-activated water(PAW) as alternative non-thermal decontamination technologies for tofu:Impact on microbiological,sensorial and functional quality attributes[J]. Food Research International,2020,129:108859.

[4]尹宗伦. 科学研究继续肯定大豆蛋白健康功效[J]. 中国食品学报,2008(01):137.

[5]Soprani T,Uliana V K,Ribeiro R F,et al. Cardiac protein changes in rats after soybean oil treatment:a proteomic study[J]. Lipids in Health and Disease,2015,14:1-9.

[6]James A T,Yang A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food chemistry,2016,194,284-289.

[7]李傲辰. 大豆的主要营养成分及营养价值研究进展[J]. 现代农业科技,2020(23):213-214.

[8]Soprani T,ULiana V K,Ribeiro R F J. ,et al. Cardiac protein changes in rats after soybean oil treatment:A proteomic study[J]. Lipids in Health and Disease,2015,(14):26.

[9]王巍杰,吴丹,王金朋. 大豆油脂储存蛋白的生物信息学分析[J]. 大豆科学,2016,35(02):234-238.

[10]Van K,McHale L K. Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean[Glycine max(L. )Merr. ] seed[J]. International Journal of Molecular Sciences,2017,18,1180.

[11]Patil G,Mian R,Vuong T,et al. Molecular mapping and genomics of soybean seed protein:A review and perspective for the future[J]. Theoretical and Applied Genetics,2017,130,1975-1991.

[12]Rincker K,Nelson R,Specht J,et al. Genetic improvement of US soybean in maturity groups II,III,and IV[J]. Crop Science,2014,54,1419-1432.

[13]宋雷,范成明,陈宇红,等. 植物油分合成的分子调控机制[J]. 分子植物育种,2016,(8):2178-2187.

[14]Baud S,Lepiniec L. Physiological and developmental regulation of seed oil production[J]. Progress in lipid research,2010,49(3):235-49.

[15]Kang F,Rawsthorne S. Metabolism of glucose-6-phosphate and utilization of multiple metabolites for fatty acid synthesis by plastids from developing oil seed rape embryos[J]. Planta,1996,199:321-7.

[16]Wakao S,Andre C,Benning C. Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis[J]. Plant Physiology,2008,146:277-88.

[17]Yang Y,Kong Q,Lim A R Q,et al. Transcriptional regulation of oil biosynthesis in seed plants:current understanding,applications,and perspectives[J]. Plant Communications,2022,3(5),100328.

[18]Zhang D,Zhao M,Li S,et al. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean[J]. Plant Journal,2017,90(6),1120-1133.

[19]Jo L,Pelletier J M,Hsu S W,et al. Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(2),1223-1232.

[20]Pelletier J M,Kwong R W,Park S,et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(32),E6710-e6719.

[21]Lu X,Li Q,Xiong Q,et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication[J]. Plant Journal,2016,86(6),530-544.

[22]Li Q,Lu X,Song Q,et al. Selection for a zinc-finger protein contributes to seed oil increase during soybean domestication[J]. Plant Physiology,2017,173(4),2208-2224.

[23]Lu L,Wei W,Li Q T,et al. A transcriptional regulatory module controls lipid accumulation in soybean[J]. New Phytologist,2021,231(2),661-678.

[24]Baud S,Mendoza M S,To A,et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON 2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant Journal,2007,50(5),825-838.

[25]Mu J,Tan H,Zheng Q,et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiology,2008,148(2),1042-1054.

[26]Shen B,Allen W B,Zheng P,et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology,2010,153(3),980-987.

[27]Manan S,Ahmad M Z,Zhang G,et al. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development[J]. Frontiers in Plant Science,2017,8.

[28]Chen L,Zheng Y,Dong Z,et al. Soybean(Glycine max) WRINKLED1 transcription factor,GmWRI1a,positively regulates seed oil accumulation[J]. Molecular Genetics and Genomics,2018,293(2),401-415.

[29]Chen B,Zhang G,Li P,et al. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis,lipid biosynthesis and hormone signalling in soybean(Glycine max)[J]. Plant Biotechnology Journal,2020,18(1),155-171.

[30]Guo W,Chen L,Chen H,et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters,and increases total seed oil production under field conditions[J]. Plant Biotechnology Journal,2020,18(8),1639-1641.

[31]Wang Z,Wang Y,Shang P,et al. Overexpression of soybean GmWRI1a stably increases the seed oil content in soybean[J]. International Journal of Molecular Sciences,2022,23(9),5084.

[32]Zhang D,Sun L,Li S,et al. Elevation of soybean seed oil content through selection for seed coat shininess[J]. Nature Plants,2018,4(1),30-35.

[33]Zhang D,Zhang H,Hu Z,et al. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication[J]. PLOS Genetics,2019,15(7),e1008267.

[34]侯云龙,陈健,崔正果,等. 大豆种子蛋白组分研究及育种应用进展[J]. 东北农业科学,2023,48(6):59-63.

[35]Dunwell J M,Khuri S,Gane P J. Microbial relatives of the seed storage proteins of higher plants:conservation of structure and diversification of function during evolution of the cupin superfamily[J]. Microbiology and Molecular Biology Reviews,2000,64(1):153-79.

[36]Peng I,Quass D,Dayton W,et al. physicochemical and functional properties of soybean 11S globulin-a review[J]. Cereal Chemistry,1984.

[37]Derbyshire E,Wright D,Boulter D. Legumin and vicilin,storage proteins of legume seeds[J]. Phytochemistry,1976,15(1):3-24.

[38]Nishinari K,Fang Y,Guo S,et al. Soy proteins:A review on composition,aggregation and emulsification[J]. Food hydrocolloids,2014,39:301-18.

[39]高新起. 种子贮藏蛋白的运输、积累和基因表达调控[J]. 细胞生物学杂志,2005,27(1):4.

[40]Paris N,Stanley C M,Jones R L,et al. Plant cells contain two functionally distinct vacuolar compartmentss[J]. Cell,1996,85,563-572.

[41]Tang B L,Wang Y,Ong Y S,et al. COPII and exit from the endoplasmic reticulums[J]. Biochimica et Biophysica Acta,2005,1744,293-303.

[42]Traub L M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membranes[J]. Biochimica et Biophysica Acta,2005,1744,415-437.

[43]Hwang I. Sorting and anterograde trafficking at the Golgi apparatuss[J]. Plant Physiology,2008,148,673-683.

[44]Jung C,Lee G J,Jang M,et al. Identification of sorting motifs of AtβFruct4 for trafficking from the ER to the vacuole through the Golgi and PVCs[J]. Traffic,2011,12,1774-1792.

[45]Kirsch T,Paris N,Butler J M,et al. Purification and initial characterization of a potential plant vacuolar targeting receptors[J]. Proc. Natl. Acad. Sci. USA,1994,91,3403-3407.

[46]Kang H,Hwang I. Vacuolar sorting receptor-mediated trafficking of soluble vacuolar proteins in plant cells[J]. Plants,2014,3(3):392-408.

[47]Krishnan H B,Jez J M. Review:The promise and limits for enhancing sulfur-containing amino acid content of soybean seed[J]. Plant Science,2018,272,14-21.

[48]刘会云,王婉晴,李欣,等. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响[J]. 作物学报,2017,43(5):691-700.

[49]郭卫卫. 小麦籽粒高分子量谷蛋白重要调控因子的克隆及功能鉴定[D]. 中国农业大学,2015.

[50]Xie Y,Wang Y,Zong C,et al. OsRab5a reguLates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant Journal for Cell & Molecular Biology,2010,64(5):812-824.

[51]Liu F,Ren Y,Wang Y,et al. OsVPS9A functions cooperatively with OsRAB5A to reguLate post-Golgi dense vesicle-mediated storageprotein trafficking to the protein storage vacuole in rice endosperm cells[J]. Molecular Plant,2013,6(6):1918-1932.

[52]Ren Y,Wang Y,Feng L,et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a reguLator of post-Golgi vesicuLar traffic essential for vacuolar protein sorting in rice endosperm[J]. Plant Cell,2014,26(1):410-425.

[53]Wang Y,Liu F,Ren Y,et al. GOLGI TRANSPORT 1B reguLates protein export from the endoplasmic reticuLum in rice endospermcells[J]. Plant Cell,2016,28(11):2850-2865.

[54]Y Ren,Y Wang,Pan T,et al. GPA5 Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins[J]. Plant Cell,2020,32(3):758-777.

[55]Zhu J,Ren Y,Wang Y,et al. OsNHX5-mediated pH homeostasis is required for post-Golgi trafficking of seed storage proteins in rice endosperm cells[J]. BMC Plant Biology,2019,19(1):1-12.

[56]Pan T,Wang Y,Jing R,et al. Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1-CCZ1[J]. Plant Physiology,2021,187(4):2174-2191.

[57]Zhu J,Ren Y,Zhang Y,et al. Subunit E isoform 1 of vacuolar H+-ATPase OsVHA enables post-Golgi trafficking of rice seed storage proteins[J]. Plant Physiology,2021,187(4):2192-2208.

[58]Wei Z,Pan T,Zhao Y,et al. The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon[J]. Journal of experimental botany,2020,71(3):808-822

[59]Wang H W,Zhang B,Hao Y J,et al. The soybean Dof-type transcription factor genes,GmDof4 and GmDof11,enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal,2007,52(4):716-729.

[60]Yang T,Wu X,Wang W,et al. Regulation of seed storage protein synthesis in monocot and dicot plants:A comparative review[J]. Molecular Plant,2023,16:145-167.

[61]Zhang Y,Bhat J A,Zhang Y,et al. Understanding the molecular regulatory networks of seed size in soybean[J]. International Journal of Molecular Sciences,2024,25:1441.

[62]Lu X,Xiong Q,Cheng T,et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight[J]. Molecular Plant,2017,10,670-684.

[63]Zhu W,Yang C,Yong B,et al. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1,a SPINDLY-like gene,is exploited in soybean domestication and improvement[J]. New Phytologist,2022,236:1375-1392.

[64]Hu Y,Liu Y,Lu L,et al. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean[J]. New Phytologist,2023,240:2436-2454.

[65]Zuo J,Li J. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics.,2014,48,99-118.

[66]Goutte C,Hepler W,Mickey KM,et al. aph-2 encodes a novel extracelluLar protein required for GLP-1-mediated signaling[J]. Development,2000,127(11):2481-2492.

[67]Yu G,Nishimura M,Arakawa S,et al. Nicastrin moduLates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing[J]. Nature,2000,407(6800):48-54.

[68]Arawaka S,Hasegawa H,Tandon A,et al. The levels of mature glycosylated nicastrin are reguLated and correlate withγ-secretase processing of amyloid beta-precursor protein[J]. JNeurochem,2002,83(5):1065-71.

[69]Li T,Ma G,Cai H,et al. Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals[J]. Journal Neurosci,2003,Apr 15;23(8):3272-7.

[70]Chen F,Yu G,Arawaka S,et al. Nicastrin binds to membrane-tethered Notch[J]. Nature Cell Biology,2001,3(8):751-4.

[71]Kovall R A,Gebelein B,Sprinzak D,et al. The canonical notch signaling pathway:structural and biochemical insights into shape,sugar,and force[J]. Developmental Cell,2017,41(3):228.

[72]Confaloni A,Crestini A,Albani D,et al. Rat nicastrin gene:cDNA isolation,mRNA variants and expression pattern analysis[J]. Brain Research Brain Res,2005,136(1-2):12-22.

[73]龙志敏,贺桂琼. γ-分泌酶组件蛋白Nicastrin的研究进展[J]. 生命科学,2010,(9):7.

[74]龙志敏,赵蕾,骆世芳,等. 蛋白酶体抑制剂处理神经细胞系后Nicastrin的表达变化及其与Aβ的关系[J]. 基础医学与临床,2011,31(5):5.

[75]彭雪华,龙志敏,骆世芳,等. 溶酶体酶抑制剂对神经细胞内Nicastrin表达水平的影响[J]. 中国老年学杂志,2012,32(14):4.

[76]Galimberti D,Scarpini E. New perspectives for the treatment of Alzheimer’s disease[J]. The Open Geriatric Medicine Journal,2008,1(1):33-42.

[77]Bolduc D M,Montagna D R,Gu Y,et al. Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain[J]. Proceedings of the National Academy of ences,2015:E509-518.

[78]张春青,谌小维,胡志安. Nicastrin:一种新型的γ-分泌酶组成蛋白[J]. 生物化学与生物物理进展,2005,32(10):924-928.

[79]黄秀梅. 用酵母双杂交系统筛选与nicastrin相互作用蛋白的初步研究[D]. 福建:厦门大学,2007.

[80]易艳琼. Nicastrin与THAP7的相互作用[D]. 福建:厦门大学,2009.

[81]Jin C,Wang J,Wang Y,et al. Modulation of amyloid precursor protein cleavage by γ-secretase activating protein through phase separation[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,22;119(12):e2122292119.

[82]Golde T E,Estus S,Younkin LH,et al. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives[J]. Science,1992,7;255(5045):728-30.

[83]李文锐. γ分泌酶功能障碍引起反常性痤疮以及色素异常机制的研究[D]. 北京:北京协和医学院,2021.

[84]Jung S,Hyun J,Nah J,et al. SERP1 is an assembly regulator ofγ-secretase in metabolic stress conditions[J]. Science Signaling,2020,17;13(623):eaax8949.

[85]Wong E,Frost G R,Li Y M. γ-Secretase modulatory proteins:The guiding hand behind the running scissors[J]. Frontiers in Aging Neuroscience,2020,2;12:614690.

[86]Wahrle S,Das P,Nyborg AC,et al. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains[J]. Neurobiology of Disease,2002,9(1):11-23.

[87]He G,Luo W,Li P,et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease[J]. Nature,2010,2;467(7311):95-8.

[88]Michalina S,Tomasz S,MichałM,et al. Gamma-secretase subunits associate in intracelluLar membrane compartments in Arabidopsis thaliana[J]. Journal of Experimental Botany,2014,65(12):3015-3027.

[89]Surpin M,Zheng H Y,Morita M T,et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways[J]. Plant Cell,2003,15(12):2885-99.

[90]Cao P,Zhao Y,Wu F,et al. Multi-Omics techniques for soybean molecular breeding[J]. International Journal of Molecular Sciences,2022,23(9):4994.

[91]Duan Z,Li Q,Wang H,et al. Genetic regulatory networks of soybean seed size,oil and protein contents[J]. Frontiers in Plant Science,2023,14:1160418.

[92]Miao L,Yang S,Zhang K,et al. Natural variation and selection in GmSWEET39 affect soybean seed oil content[J]. New Phytology,2019,225:1651-1666.

[93]Liu Y,Du H,Li P,et al. Pan-Genome of wild and cultivated soybeans[J]. Cell,2020,182:162-176.

[94]Goettel W,Zhang H Y,Li Y,et al. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean[J]. Nature Communication,2022,13:3051.

[95]Li J,Zhang Y H,Ma R R,et al. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication[J]. Plant Biotechnology Journal,2022,20:1110-1121.

[96]Duan Z B,Zhang M,Zhang Z F,et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean[J]. Plant Biotechnology Journal,2022,20:1807-1818.

[97]Cai Z,Xian P,Cheng Y,et al. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean[J]. New Phytologist,2023,239:905-919.

[98]Yuan X,Jiang X,Zhang M,et al. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean[J]. The Plant Cell,2024,koae062.

[99]Gu Y Z,Li W,Jiang H W,et al. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size[J]. Journal of Experimental Botany,2017,68:2717-2729.

[100]Zhang L,Wang S B,Li Q G,et al. An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high-and low-oil plants[J]. PLOS One,2016,11:e0154882.

[101]Zhang Y Q,Lu X,Zhao F Y,et al. Soybean GmDREBL increases lipid content in seeds of transgenic Arabidopsis[J]. Scientific Reports,2016,6:34307.

[102]Du J,Wang S,He C,et al. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis[J]. Journal of Experimental Botany,2017,68:1955-1972.

[103]Bassi F M,Bentley A R,Charmet G,et al. Breeding schemes for the implementation of genomic selection in wheat(Triticum spp. )[J]. Plant Science,2016,242 23-36.

[104]Qian L,Hickey L T,Stahl A,et al. Exploring and harnessing haplotype diversity to improve yield stability in crops[J]. Frontiers Plant Science,2017,5;8:1534.

[105]郝德荣. 大豆产量相关性状QTL的关联分析及候选基因GmGA3ox单倍型鉴定[D]. 南京:南京农业大学,2011.

[106]Long Y,Nicolle H,Li S,et al. Identification of QTL with large effect on seed weight in a selective popuLation of soybean with genome-wide association and fixation index analyses[J]. Bmc Genomics,2017,18(1):529.

[107]Patil G,Do T,Vuong T D,et al. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean[J]. Scientific Reports,2016,6(1):191-99.

[108]贺米兰,李海洋,黄泽荣,等. 大豆DELLA基因单倍型与花期关联分析及基因编辑靶点鉴定[J]. 植物遗传资源学报,2022.

[109]Bevan M W,Uauy C,Wulff B B,et al. Genomic innovation for crop improvement[J]. Nature,2017,15;543(7645):346-354.

[110]Abbai R,Singh V K,Nachimuthu V V,et al. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains[J]. Plant Biotechnol Journal,2019,17(8):1612-1622.

[111]SinhaP,SinghV K,SaxenaR K,et al. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea(Cajanus cajan L. )[J]. Plant Biotechnology Journal,2020,18(12),2482-2490.

[112]陈影. 大豆脂肪酸组分主效QTL的精细定位与候选基因的单倍型分析[D]. 北京:中国农业科学院,2018.

[113]于惠琳,吴玉群,王延波等. 甜玉米籽粒总RNA提取方法的比较[J]. 园艺与种苗,2022,42(01):67-68+71.

[114]单大鹏,王晓云,洪志鹏,等. 转Cry1Ia基因抗虫大豆对鳞翅目靶标害虫的抗性分析[J]. 东北农业大学学报,2021,52(05):1-9.

[115]秦洪涛. 大豆蛋白、油分含量QTL(Qpro&oil_Gm20)的精细定位及候选基因功能验证[D]. 东北农业大学,2019.

[116]李佳鹏. 大豆品质性状候选基因GmCupin的功能分析[D]. 东北农业大学,2022.

[117]张孝天. 微小隐孢子虫L-lectin和ADF蛋白的表达和初步功能鉴定[D]. 河南农业大学,2023.

[118]王旭. 拟南芥葡萄糖-6-磷酸脱氢酶(G6PD5)基因的克隆及功能研究[D]. 哈尔滨:黑龙江大学,2013.

[119]Zhao B,Dai A,Wei H,et al. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean[J]. Plant Molecular Biology,2016,90(1-2):33-47.

[120]Qi Z,Zhang Z,Wang Z,et al. Meta‐analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development[J]. Plant,Cell&Environment,2018,41(9):2109-2127.

[121]郑炜君,徐兆师,冯志娟,等. 大豆NF-YB家族全基因组鉴定、分类和表达[J]. 作物学报,2012,38(09):1570-1582.

[122]Laloum T,De Mita S,Gamas P,et al. CCAAT box binding transcription factors in plants: Y so many[J]? Trends Plant Science,2013,18, 157-166.

[123]Gusmaroli G,Tonelli C,Mantovani R J G. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits[J]. Gene,2002,283, 41-48.

[124]Baudin M,Laloum T,Lepage A,et al. A phylogenetically conserved group of nuclear factor-Y transcription factors interact to control nodulation in legumes[J]. Plant Physiology,2015,169,2761-2773.

[125]Torkamaneh D,Laroche J,Valliyodan B,et al. Soybean haplotype map(GmHapMap):A universal resource for soybean translational and functional genomics[J]. BioRxiv,2019,534578.

[126]Liang Q,Chen L,Yang X,et al. Natural variation of Dt2 determines branching in soybean[J]. Nature Communications,2022,13,6429.

中图分类号:

 S565.1    

开放日期:

 2027-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式