- 无标题文档
查看论文信息

中文题名:

 东北地区粳稻杂交稻产量形成及氮肥管理响应的研究    

姓名:

 梁雪玉    

学号:

 S220302088    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095131    

学科名称:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 东北农业大学    

院系:

 农学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 水稻栽培    

第一导师姓名:

 武小霞    

第一导师单位:

 东北农业大学    

第二导师姓名:

 任荣荣    

完成日期:

 2024-04-18    

答辩日期:

 2024-05-23    

外文题名:

 Study on the Yield Formation and Nitrogen Response of Japonica Hybrid Rice Varieties in Northeast China    

中文关键词:

 粳稻杂交稻 ; 氮肥管理 ; 产量 ; 产量构成因素 ; 氮素利用效率    

外文关键词:

 Japonica hybrid rice ; Nitrogen fertilizer management ; Yield ; Yield components ; Nitrogen use efficiency    

中文摘要:

水稻是我国重要的粮食作物之一,为我国60%的人口提供食物来源。杂种优势利用是提高水稻产量的重要途径,特别是在粳稻杂交稻方面,其潜在的增产效果备受关注。随着杂交育种技术的不断进步,通过利用粳稻的杂种优势来提升单产水平,是北方粳稻生产发展的重要途径。氮素作为水稻生长中关键的营养元素,与水稻的高产有着密切的关系。我国东北地区是主要的粳稻种植区,因其全年光照和温度的不足,导致该地区粳稻的产量潜力受到了一定程度的限制。目前,在东北地区关于氮肥管理对寒地粳稻杂交稻品种的生长发育和产量形成还少有研究。因此,本研究于2023年在黑龙江省哈尔滨市闫家岗农场进行大田试验,以2个粳稻杂交稻品种创优31、天隆优619和2个常规粳稻空育131、松粳22为试验材料,设置6个氮肥水平,分别为N0(0 kg hm-2)、N1(45 kg hm-2)、N2(90 kg hm-2)、N3(135 kg hm-2)、N4(180 kg hm-2)和N5(225 kg hm-2)。探究在不同氮肥管理下粳稻杂交稻品种在东北地区的产量和氮素利用效率(NUE)表现,阐明其产量形成的生理机制及高产相关的重要农艺性状。同时,利用无人机遥感对水稻长势实时监测及产量精准预测进行初步探索,为优化东北地区粳稻杂交稻的氮肥管理提供坚实的理论依据,同时为粳稻杂交稻的高产高效栽培提供重要的技术支持。本试验主要结果如下:

(1)从物质生产与分配角度分析,在齐穗-成熟期粳稻杂交稻品种具有较高的干物质重和收获指数,提高了干物质积累能力,从而实现了产量的提高。在齐穗-成熟期粳稻杂交稻品种的平均干物质积累达6.45 t hm-2,高于常规粳稻(6.01 t hm-2)。此外,合理的株高、较大的分蘖数、适宜的叶面积指数和SPAD值都是提高粳稻杂交稻品种产量的关键。对于氮肥管理而言,在不同氮肥处理下,空育131和创优31在分蘖期、幼穗分化期、齐穗期和成熟期的群体干物质积累呈先增加后下降的趋势,在N3处理下达到最大值,松粳22和天隆优619的群体干物质积累则随着施氮量的增加而增加,在N5处理下达到最大值。

(2)从产量方面来看,在不同氮肥处理下粳稻杂交稻品种的平均产量均显著高于常规粳稻,产量平均增加了25.6%。就氮肥管理而言,随施氮量的增加,空育131和创优31的产量表现为先升高后下降,在N3处理下达到最大值,分别达到5.07 t hm-2和8.48 t hm-2。松粳22和天隆优619的产量呈现逐渐上升的趋势,在N5处理下达到最大值,分别达到6.85 t hm-2和7.87 t hm-2。从产量构成因素来看,粳稻杂交稻品种的产量优势主要表现在其具有较高的每穗粒数和结实率。与N0处理相比,施氮量的提升可以促进水稻颖花分化,增加单位面积穗数和每穗粒数,从而提高水稻产量。但对于空育131和创优31这2个品种来说,氮肥施入过量会导致群体过大,削弱个体优势,出现产量构成因素之间矛盾突出、产量不增反降的现象。相比之下,N3处理更有利于协调产量构成因素之间的矛盾同时达到增量的效果。

(3)就NUE而言,在不同氮肥处理下粳稻杂交稻品种的氮肥农学利用率(AEN)和偏生产力(PFPN)显著高于常规粳稻。在不同施氮量下,四个品种的AEN和PFPN均受到显著影响。PFPN随施氮量增加而降低,且N5处理下的PFPN显著低于其它施氮处理,但施氮量对AEN影响较小。

(4)在植被指数方面,不同时期的植被指数均与水稻产量显著相关。在不同氮肥处理下,常规粳稻和粳稻杂交稻品种的归一化植被指数(NDVI)、绿色归一化植被指数(GNDVI)、土壤调整植被指数(SAVI)、优化土壤调整植被指数(OSAVI)、差值植被指数(DVI)和结构不敏感色素指数(SIPI)值均受到显著影响。在分蘖期、幼穗分化期和齐穗期与N0处理相比,随着施氮量升高,不同处理的各植被指数值均提高,且N4和N5处理显著高于其它处理,N4和N5处理之间差异不显著。在成熟期由于叶片变黄,各植被指数存在下降趋势且各处理之间差异不显著。

综上所述,相比于常规粳稻,粳稻杂交稻品种在产量和NUE方面表现更为突出,其中创优31表现出高产高效特征,适宜在东北地区大面积推广种植。N3(135 kg hm-2)处理是创优31高产高效栽培的优化氮肥管理方式。

水稻是我国重要的粮食作物之一,为我国60%的人口提供食物来源。杂种优势利用是提高水稻产量的重要途径,特别是在粳稻杂交稻方面,其潜在的增产效果备受关注。随着杂交育种技术的不断进步,通过利用粳稻的杂种优势来提升单产水平,是北方粳稻生产发展的重要途径。氮素作为水稻生长中关键的营养元素,与水稻的高产有着密切的关系。我国东北地区是主要的粳稻种植区,因其全年光照和温度的不足,导致该地区粳稻的产量潜力受到了一定程度的限制。目前,在东北地区关于氮肥管理对寒地粳稻杂交稻品种的生长发育和产量形成还少有研究。因此,本研究于2023年在黑龙江省哈尔滨市闫家岗农场进行大田试验,以2个粳稻杂交稻品种创优31、天隆优619和2个常规粳稻空育131、松粳22为试验材料,设置6个氮肥水平,分别为N0(0 kg hm-2)、N1(45 kg hm-2)、N2(90 kg hm-2)、N3(135 kg hm-2)、N4(180 kg hm-2)和N5(225 kg hm-2)。探究在不同氮肥管理下粳稻杂交稻品种在东北地区的产量和氮素利用效率(NUE)表现,阐明其产量形成的生理机制及高产相关的重要农艺性状。同时,利用无人机遥感对水稻长势实时监测及产量精准预测进行初步探索,为优化东北地区粳稻杂交稻的氮肥管理提供坚实的理论依据,同时为粳稻杂交稻的高产高效栽培提供重要的技术支持。本试验主要结果如下:

(1)从物质生产与分配角度分析,在齐穗-成熟期粳稻杂交稻品种具有较高的干物质重和收获指数,提高了干物质积累能力,从而实现了产量的提高。在齐穗-成熟期粳稻杂交稻品种的平均干物质积累达6.45 t hm-2,高于常规粳稻(6.01 t hm-2)。此外,合理的株高、较大的分蘖数、适宜的叶面积指数和SPAD值都是提高粳稻杂交稻品种产量的关键。对于氮肥管理而言,在不同氮肥处理下,空育131和创优31在分蘖期、幼穗分化期、齐穗期和成熟期的群体干物质积累呈先增加后下降的趋势,在N3处理下达到最大值,松粳22和天隆优619的群体干物质积累则随着施氮量的增加而增加,在N5处理下达到最大值。

(2)从产量方面来看,在不同氮肥处理下粳稻杂交稻品种的平均产量均显著高于常规粳稻,产量平均增加了25.6%。就氮肥管理而言,随施氮量的增加,空育131和创优31的产量表现为先升高后下降,在N3处理下达到最大值,分别达到5.07 t hm-2和8.48 t hm-2。松粳22和天隆优619的产量呈现逐渐上升的趋势,在N5处理下达到最大值,分别达到6.85 t hm-2和7.87 t hm-2。从产量构成因素来看,粳稻杂交稻品种的产量优势主要表现在其具有较高的每穗粒数和结实率。与N0处理相比,施氮量的提升可以促进水稻颖花分化,增加单位面积穗数和每穗粒数,从而提高水稻产量。但对于空育131和创优31这2个品种来说,氮肥施入过量会导致群体过大,削弱个体优势,出现产量构成因素之间矛盾突出、产量不增反降的现象。相比之下,N3处理更有利于协调产量构成因素之间的矛盾同时达到增量的效果。

(3)就NUE而言,在不同氮肥处理下粳稻杂交稻品种的氮肥农学利用率(AEN)和偏生产力(PFPN)显著高于常规粳稻。在不同施氮量下,四个品种的AEN和PFPN均受到显著影响。PFPN随施氮量增加而降低,且N5处理下的PFPN显著低于其它施氮处理,但施氮量对AEN影响较小。

(4)在植被指数方面,不同时期的植被指数均与水稻产量显著相关。在不同氮肥处理下,常规粳稻和粳稻杂交稻品种的归一化植被指数(NDVI)、绿色归一化植被指数(GNDVI)、土壤调整植被指数(SAVI)、优化土壤调整植被指数(OSAVI)、差值植被指数(DVI)和结构不敏感色素指数(SIPI)值均受到显著影响。在分蘖期、幼穗分化期和齐穗期与N0处理相比,随着施氮量升高,不同处理的各植被指数值均提高,且N4和N5处理显著高于其它处理,N4和N5处理之间差异不显著。在成熟期由于叶片变黄,各植被指数存在下降趋势且各处理之间差异不显著。

综上所述,相比于常规粳稻,粳稻杂交稻品种在产量和NUE方面表现更为突出,其中创优31表现出高产高效特征,适宜在东北地区大面积推广种植。N3(135 kg hm-2)处理是创优31高产高效栽培的优化氮肥管理方式。

外文摘要:

Rice is one of the important food crops in China, providing a source of food for 60% of the population. The utilization of heterosis is a crucial approach to increase rice yield, especially in japonica hybrid rice, where its potential yield-increasing effects have attracted much attention. With continuous advancements in hybrid breeding technology, leveraging the heterosis of japonica rice to enhance yield per unit area has become a significant pathway for the development of japonica rice production in northern China. Nitrogen, as a key nutritional element in rice growth, is closely related to high rice yield. The northeastern region of China is a major japonica rice planting area. However, due to insufficient sunlight and temperature throughout the year, the yield potential of japonica rice in this region is somewhat limited. Currently, there is limited research on the effects of nitrogen fertilizer management on the growth, development and yield formation of cold-tolerant japonica hybrid rice varieties in northeastern China.Therefore, this study conducted a field experiment in Yanjiagang Farm, Harbin City, Heilongjiang Province in 2023. The japonica hybrid rice varieties Chuangyou31 and Tianlongyou619, as well as the conventional japonica rice varieties Kongyu131 and Songjing22, were used as experimental materials. Six nitrogen fertilizer levels were set: N0 (0 kg hm-2), N1 (45 kg hm-2), N2 (90 kg hm-2), N3 (135 kg hm-2), N4 (180 kg hm-2) and N5 (225 kg hm-2). This study aimed to investigate the yield and nitrogen use efficiency (NUE) of japonica hybrid rice varieties in northeastern China under different nitrogen fertilizer management practices, elucidating the physiological mechanisms underlying yield formation and important agronomic traits related to high yield. Additionally, a preliminary exploration was conducted using unmanned aerial vehicle (UAV) remote sensing for real-time monitoring of rice growth and accurate prediction of yield, providing a solid theoretical basis for optimizing nitrogen fertilizer management in japonica hybrid rice in northeastern China. Furthermore, this study offers important technical support for the high-yield and efficient cultivation of japonica hybrid rice.The main results of this experiment are as follows:

(1) From the perspective of material production and distribution, japonica hybrid rice varieties exhibited higher dry matter weight and harvest index during the heading to physiological maturity period, enhancing their dry matter accumulation ability and ultimately leading to increased yields. The average dry matter accumulation of japonica hybrid rice varieties reached 6.45 t hm-2, surpassing that of conventional japonica rice (6.01 t hm-2). Additionally, optimal plant height, larger tiller number, suiTab. leaf area index and SPAD values were all crucial for increasing the yield of japonica hybrid rice varieties. Regarding nitrogen fertilizer management, the population dry matter accumulation of Kongyu131 and Chuangyou31 exhibited a trend of initial increase followed by a decline under different nitrogen fertilizer treatments, peaking under the N3 treatment. Conversely, the population dry matter accumulation of Songjing22 and Tianlongyou619 increased with increasing nitrogen application, reaching a maximum under the N5 treatment.

(2) In terms of yield, the average yield of japonica hybrid rice varieties was significantly higher than that of conventional japonica rice under different nitrogen fertilizer treatments, with an average increase of 25.6%. Regarding nitrogen fertilizer management, the yield of Kongyu131 and Chuangyou31 initially increased and then decreased with increasing nitrogen application, peaking under the N3 treatment at 5.07 t hm-2 and 8.48 t hm-2, respectively. Conversely, the yield of Songjing22 and Tianlongyou619 gradually increased with nitrogen application, reaching a maximum under the N5 treatment at 6.85 t hm-2 and 7.87 t hm-2, respectively. From the perspective of yield components, the yield advantage of japonica hybrid rice varieties was primarily attributed to their higher grain number per panicle and seed setting rate. Compared to the N0 treatment, increased nitrogen application promoted the differentiation of rice spikelets, increasing the number of panicles and grains per unit area, thereby enhancing rice yield. However, excessive nitrogen application in Kongyu131 and Chuangyou31 led to overcrowding, weakening individual advantages, and resulting in conflicting yield components and decreased yields. In contrast, the N3 treatment was more conducive to balancing the contradictions among yield components while achieving incremental effects.

(3) Regarding NUE, the agronomic nitrogen use efficiency (AEN) and partial factor productivity (PFPN) of japonica hybrid rice varieties were significantly higher than those of conventional japonica rice under different nitrogen fertilizer treatments. Both AEN and PFPN were significantly affected by nitrogen application rates in all four varieties. PFPN decreased with increasing nitrogen application and PFPN under the N5 treatment was significantly lower than that under other treatments. However, nitrogen application had a relatively minor impact on AEN.

(4) In terms of vegetation indices, significant correlations were observed between vegetation indices at different stages and rice yield. Under various nitrogen fertilizer treatments, significant changes were observed in the normalized difference NDVI, GNDVI, SAVI, OSAVI, DVI and SIPI values of both conventional japonica rice and japonica hybrid rice. Compared to the N0 treatment, the values of all vegetation indices increased with increasing nitrogen application during the tillering, young panicle initiation and heading stages. Significant differences were observed between the N4 and N5 treatments, which were higher than other treatments, but no significant differences were observed between N4 and N5. During the maturity stage, due to leaf yellowing, all vegetation indices exhibited a decreasing trend with no significant differences among treatments.

In summary, japonica hybrid rice varieties exhibited superior performance in terms of yield and NUE compared to conventional japonica rice. Among them, Chuangyou31 demonstrated high yield and efficiency characteristics, making it suiTab. for widespread cultivation in Northeast China. The N3 (135 kg hm-2) treatment was identified as an optimized nitrogen fertilizer management strategy for achieving high yield and efficiency in Chuangyou31.

参考文献:

[1] 国家统计局.国家数据库.http://data.stats.gov.cn/.

[2] 高扬,宋微,步金宝,等. 黑龙江省两系杂交粳稻与常规粳稻产量构成因素分析[J]. 北方水稻,2018,48:6-10.

[3] Soler-Jofra A,Pérez J,Loosdrecht M C M V. Hydroxylamine and the nitrogen cycle:A review[J]. Water Research,2020,190:116723.

[4] Peng S,Ismail A M. Physiological basis of yield and environmental adaptation in rice, Physiology and biotechnology integration for plant breeding[J]. CRC Press,2004:89-135.

[5] Santos A,Fageria N,Prabhu A. Rice ratooning management practices for higher yields[J]. Communications in Soil Science and Plant Analysis,2003,34:881-918.

[6] Kundu D K,Ladha J K. Efficient management of soil and biologically fixed N2 in intensively-cultivated rice fields[J]. Soil Biology and Biochemistry,1995,27(4):431-439.

[7] Guo S,Wu L,Shen Q,et al. Practices and theoretics of non-flooded rice mulching cultivation in China[J]. Beijing:China Agricultural University Press,2007:3-6.

[8] Cassman K G. Ecological intensification of cereal production systems:yield potential,soil quality,and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96 11:5952-5959.

[9] Peng S,Buresh R J,Huang J,et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research,2006,96:37-47.

[10] 李庆逵,朱兆良,于天仁. 中国农业持续发展中的肥料问题[M]. 南昌:江西科学技术出版社,1998.

[11] Guo J,Liu X,Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science,2010,327:1008-1010.

[12] Ju X T,Kou C L,Zhang F S,et al. Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution,2006,143(1):117-25.

[13] 赵凌,赵春芳,周丽慧,等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学,2015,43(10):105-107.

[14] 吴文勇,龚时宏,李久生,等. 现代灌溉水肥调控原理与技术研究进展[J]. 中国水利水电科学研究院学报,2021,19:81-89.

[15] Peng S,Tang Q,Zou Y. Current status and challenges of rice production in China[J]. Plant Production Science,2009,12:3-8.

[16] Normile D. Reinventing rice to feed the world[J]. Science,2008:330-333.

[17] 袁隆平. 发展杂交水稻 保障粮食安全[J]. 杂交水稻,2010,25:1-2.

[18] 谢辉. 江淮稻区杂交粳稻亲本产量性状优异配合力标记基因型筛选与配合力改良研究[D]. 江苏:南京农业大学种子科学与技术学科博士学位论文,2017.

[19] Chen Z J. Genomic and epigenetic insights into the molecular bases of heterosis[J]. Nature Reviews Genetics,2013,14(7):471-482.

[20] 褚庆全,齐成喜,杨飞,等. 我国杂交粳稻发展现状、问题及其对策[J]. 作物杂志,2005,01:9-12.

[21] 陈健. 辽宁省杂交水稻的生产现状与发展对策[J]. 中国稻米,2006,04:12-13.

[22] 邓华凤,何强,舒服,等. 中国杂交粳稻研究现状与对策[J]. 杂交水稻,2006,01:1-6.

[23] 黄胜东,谷福林,苏自强,等. 江苏省杂交中粳与常规中粳产量要素比较[J]. 江苏农业科学,2005,05:17-18.

[24] 张小明,叶胜海,管耀祖,等. 浙江新育成的杂交粳稻与常规粳稻主要性状比较[J]. 杂交水稻,2006,03:21-24.

[25] 王才林,汤玉庚. 我国杂交粳稻育种的现状与展望[J]. 中国农业科学,1989,05:8-13.

[26] 黄殿成. 长江中下游杂交粳稻亲本产量和品质性状优异配合力标记基因型筛选与配合力改良研究[D]. 江苏:南京农业大学种子科学与技术学科博士学位论文,2012.

[27] 汤玉庚,王才林,张兆兰,等. 再论长江流域杂交粳稻育种攻关中的几个问题[J]. 杂交水稻,1990,06:3-6.

[28] 洪德林,潘恩飞,陈长青. 杂交粳稻与纯系粳稻收获指数比较研究[J]. 南京农业大学学报,1998,04:15-21.

[29] 罗玉坤,朱智伟,金连登,等. 从普查结果看我国水稻品种品质的现状[J]. 中国稻米,2002,08:5-9.

[30] 李建红,洪德林. 新选粳稻BT型同质恢复系农艺和品质性状的配合力研究[J]. 作物学报,2005,31:851-857.

[31] Jin F, Wang H, Xu H, et al. Comparisons of plant-type characteristics and yield components in filial generations of Indica × Japonica crosses grown in different regions in China[J]. Field Crops Research,2013,154:110-118.

[32] 邓华凤. 中国杂交粳稻研究现状与对策[C]. 首届国际生物经济高层论坛. 2006,01:1-6.

[33] 林建荣,吴明国,宋昕蔚. 三系粳稻不育系开花习性与异交结实率的关系[J]. 杂交水稻,2006,05:69-72.

[34] 汤述翥,孙叶,张宏根,等. 同核异质粳稻不育系特性比较[J]. 中国水稻科学,2005,06:521-526.

[35] 汤述翥,张宏根,梁国华,等. 三系杂交粳稻发展缓慢的原因及对策[J]. 杂交水稻,2008,01:1-5.

[36] De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia[J]. Developments in Plant and Soil Sciences,1986:171-186.

[37] 李红,何炜,连玲,等. 水稻株型的研究进展[J]. 福建稻麦科技,2020,38:61-66.

[38] 赵丽君,黄影华,张善炫,等. 不同氮肥梯度处理水稻茎蘖数及株高变化规律[J]. 湖北农业科学,2020,59:13-16.

[39] 窦超银,袁尧,王洁,等. 水肥一体化施氮量对水稻生长和产量的影响[J]. 江苏水利,2019,07:30-34.

[40] 杨世民,谢力,郑顺林,等. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J]. 作物学报,2009,35:93-103.

[41] 帅鹏. 不同氮肥水平下超级杂交稻与普通杂交稻农艺表现的比较研究[D]. 湖北:华中农业大学作物栽培与耕作学科硕士学位论文,2019.

[42] 肖立,罗俊英,陈泽. 3600施氮量和栽插密度对杂交稻金优527抗倒伏能力的影响[J]. 安徽农学通报(上半月刊),2009,15:153-155.

[43] Wang D,Xu C,Yan J,et al. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice[J]. Field Crops Research,2017,211:27-36.

[44] 吕艳超. 施氮量对盐胁迫下寒地粳稻生长发育籽粒淀粉积累及产质量的影响[D]. 黑龙江:东北农业大学作物栽培与耕作学科硕士学位论文,2016.

[45] Weiyang L,Shuying B,Yuya L,et al. Effects of dense planting with less nitrogen fertilization on rice yield and nitrogen use efficiency in northeast China [J]. International Journal of Plant Production,2021,15(4):625-634.

[46] 陈伟. 水稻水分生产函数及水氮耦合模型试验研究[D]. 辽宁:沈阳农业大学农业水土工程学科博士学位论文,2013.

[47] 苏卫,冯跃华,许桂玲,等. 秸秆还田与施氮量对喀斯特地区杂交籼稻干物质积累和产量的影响[J]. 核农学报,2019,33:1856-1864.

[48] 朱方旭. 水稻碳氮代谢关键酶基因表达及产量和品质性状对氮素营养的响应[D]. 黑龙江: 东北农业大学作物遗传育种学科硕士学位论文,2016.

[49] 吴文革,张玉海,张健美,等. 氮肥运筹对机插杂交中籼水稻群体质量及产量形成的影响[J]. 安徽农业大学学报,2011,38:5.

[50] 杨益花,许乃霞,苏祖芳. 不同施氮量对水稻品种植株氮素吸收利用的影响[J]. 江苏农业科学,2010,02:71-74.

[51] 魏颖娟,夏冰,赵杨,等. 15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响[J]. 核农学报,2016,30:783-791.

[52] 文璨. 氮肥运筹对双季稻产量形成及氮肥利用率的影响[D].湖南:湖南农业大学农艺与种业学科硕士学位论文,2022.

[53] 杨益花,张亚洁,苏祖芳. 施氮量对杂交水稻产量构成因素和干物质积累的影响[J]. 天津农学院学报,2005,01:5-8.

[54] 张刚,王德建,俞元春,等. 秸秆全量还田与氮肥用量对水稻产量,氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报,2016,22:877-885.

[55] 杨建,樊慧梅,刘笑笑,等. 施氮对水稻产量氮素吸收及其品质的影响[J]. 农业与技术,2015,35:16-19.

[56] 王继申,陈芹,葛徐芳. 施用氮肥对水稻产量的影响[J]. 现代农业,2015,12:44-45.

[57] 李波,宫亮,曲航,等. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响[J]. 作物杂志,2020,01:173-178.

[58] Zhong X,Peng S,Sanico A L,et al. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice[J]. Journal of Plant Nutrition,2003,26:1203-1222.

[59] 郭明明,赵广才,郭文善,等. 施氮量和行距对冬小麦产量及生理特性的影响[J]. 核农学报,2016,30:805-812.

[60] Zhou W,Yan F,Chen Y,et al. Optimized nitrogen application increases rice yield by improving the quality of tillers[J]. Plant Production Science,2022,25:311-319.

[61] 从夕汉,施伏芝,阮新民,等. 施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响[J]. 河南农业大学学报,2019,53:325-330.

[62] 汪洋. 氮素营养对水稻分蘖的产量异质性影响及调控[D]. 湖北:华中农业大学植物营养学科博士学位论文,2017.

[63] 唐健,唐闯,郭保卫,等. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报,2020,46:117-130.

[64] 朱杰,盛小琴,黄小东,等. 水直播稻优质高产精确定量施肥技术研究[J]. 上海农业科技,2007,06:42.

[65] 史锟,张福锁,刘学军,等. 不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响[J]. 农业环境科学学报,2004,01:6-12.

[66] Obi S N,Anya S E. Experience with the intrauterine device (TCU‐380A) in Enugu, eastern Nigeria[J]. International Journal of Gynecology Obstetrics,2000,71(03): 271-273.

[67] 邓中华,明日,李小坤,等. 不同密度和氮肥用量对水稻产量、构成因子及氮肥利用率的影响[J]. 土壤,2015,47:20-25.

[68] 易媛,董召娣,张明伟,等. 减氮对半冬性中筋小麦产量、NUE及氮代谢关键酶活性的影响[J]. 核农学报,2015,29:365-374.

[69] 任晓佳. 苏南地区晚播晚栽机插水稻的群体发育特征及其栽培对策研究[D]. 江苏:扬州大学作物栽培与耕作学科硕士学位论文,2018.

[70] 胡雅杰,朱大伟,邢志鹏,等. 改进施氮运筹对水稻产量和氮素吸收利用的影响[J]. 植物营养与肥料学报,2015,21:12-22.

[71] 宋文挺. 氮肥运筹对土壤氮素时空变化及冬小麦氮素利用的影响[D]. 山东:山东农业大学作物栽培与耕作学科硕士学位论文,2017.

[72] 陈海飞,冯洋,蔡红梅,等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响[J]. 植物营养与肥料学报,2014,20:1319-1328.

[73] Raun W R,Johnson G V. Improving nitrogen use efficiency for cereal production[J]. Agronomy Journal,1999,91:357-363.

[74] 彭少兵,黄见良,钟旭华,等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学,2002,35:1095-1103.

[75] 王爱华,付炳春,石广跃,等. 苏北地区旱直播稻当前施肥技术弊端与优化方案[J]. 农业科技通讯,2020,01:192-194.

[76] Gilliam F S,Billmyer J H,Walter C A,et al. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest:Evidence of nutrient redistribution by a forest understory species[J]. Atmospteric Enviorment,2016,146:261-270.

[77] 徐辰峰. 不同类型缓控释肥对水稻南粳9108氮素利用的影响[J]. 安徽农业科学,2021,49:156-159.

[78] 杨志远,李娜,马鹏,等. 水肥"三匀"技术对水稻水,氮利用效率的影响[J]. 作物学报,2020,46:408-422.

[79] 李伟波,吴留松. 太湖地区高产稻田氮肥施用与作物吸收利用的研究[J]. 土壤学报,1997,34:70-72.

[80] 李荣刚,翟云忠. 江苏省武进市高产水稻田氮素渗漏损失研究[J]. 生态与农村环境学报,2000,16:19-22.

[81] 邹长明,秦道珠,陈福兴,等. 水稻氮肥施用技术Ⅰ.氮肥施用的适宜时期与用量[J]. 湖南农业大学学报(自然科学版),2000,06:467-470.

[82] 朱彦博. 淡灰钙土水稻氮肥施用量研究[J]. 甘肃农业科技,1997,06:29-30.

[83] 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境,2000,09:1-6.

[84] Liu T Q,Fan D J,Zhang X X,et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research,2015,184:80-90.

[85] Rochette P,Angers D A,Chantigny M H,et al. Ammonia volatilization and nitrogen retention: how deep to incorporate urea?[J],2013,42(6):1635-1642.

[86] 张绍林,朱兆良,徐银华,等. 关于太湖地区稻麦上氮肥的适宜用量[J]. 土壤,1988,20:5-9.

[87] 伍泽康. 水稻氮肥深施比较试验[J]. 贵州农业科学,1999,27:52-53.

[88] 朱兆良. 稻田节氮的水肥综合管理技术的研究[J]. 土壤,1991,23:241-245.

[89] 吴敬民,姚月明. 水稻氮肥机械化深施效果初探[J]. 土壤肥料,1997,04:17-19.

[90] 吴敬民,许学前,姚月明. 基肥不同施用方法对水稻生长及稻田周围水体污染的影响[J]. 土壤通报,1999:232-234.

[91] 蔡贵信. 土壤圈物质循环与农业和环境[M]. 南京:江苏科技出版社,1995:8-24.

[92] 单玉华,王余龙,黄建晔,等. 中后期追施15N对水稻氮素积累与分配的影响[J]. 扬州大学学报(农业与生命科学版),2000,21:18-21.

[93] 梁萍萍. 喀斯特地区植被变化与地表反照率响应特征研究[D]. 贵州:贵州师范大学地图学与地理信息系统学科硕士学位论文,2020.

[94] Jinru X,Baofeng S,Significant remote sensing vegetation indices: A review of developments and applications [J]. Journal of Sensors,2017,2017:1-17.

[95] 王斌. 基于无人机采集图像的土壤湿度预测模型研究[D]. 北京:中国石油大学地质资源与地质工程学科博士学位论文,2009.

[96] 高林,杨贵军,王宝山,等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报,2015,23(07):868-876.

[97] 秦占飞. 西北地区水稻长势遥感监测研究[D]. 陕西:西北农林科技大学土地资源与空间信息技术学科博士学位论文,2016.

[98] 韦春宇,杜娅丹,程智楷,等. 基于无人机遥感植被指数优选的覆膜冬小麦估产研究[J]. 农业机械学报,2024,55(04):146-154.

[99] 王强,钟旭华,黄农荣. 光氮互作对水稻开花后物质生产和产量的影响[J]. 中国稻米,2015,21:53-55.

[100] 孙志贵. 氮肥施用量对江汉平原机插水稻分蘖成穗及产量的影响[D]. 湖北:长江大学作物学科硕士学位论文,2019.

[101] 张佳凤,冯跃华,许桂玲,等. 不同施氮量对杂交水稻内5优5399生长和产量的影响[J]. 杂交水稻,2019,34:61-66.

[102] 刘建丰,袁隆平,邓启云,等. 超高产杂交稻的光合特性研究[J]. 中国农业科学,2005,38:258-264.

[103] Huang M,Zou Y. Integrating mechanization with agronomy and breeding to ensure food security in China[J]. Field Crops Research,2018,224:22-27.

[104] 敖和军,王淑红,邹应斌,等. 超级杂交稻干物质生产特点与产量稳定性研究[J]. 中国农业科学,2008,07:1927-1936.

[105] 陈盈,王福全,孙世光,等. 辽宁杂交粳稻产量表现及其与产量构成因子的相关性[J],杂交水稻,2022,37:115-118.

[106] Sui B,Feng X,Tian G,et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors[J]. Field Crops Research,2013,150:99-107.

[107] Qiao J,Yang L,Yan T,et al. Rice dry matter and nitrogen accumulation,soil mineral N around root and N leaching,with increasing application rates of fertilizer[J]. European Journal of Agronomy,2013,49:93-103.

[108] 李秀芬,贾燕,黄元才,等. 播栽期对水稻产量和产量构成因素及生育期的影响[J]. 生态学杂志,2004,23:98-100.

[109] 杨建昌,杜永,吴长付,等. 超高产粳型水稻生长发育特性的研究[J]. 中国农业科学,2006,39:1336-1345.

[110] 李杰,张洪程,钱银飞,等. 两个杂交粳稻组合超高产生长特性的研究[J]. 中国水稻科学,2009,23(02):179-185.

[111] Wei H Y,Wang Y J,Meng T Y,et al. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice[J]. The Journal of Applied Ecology,2014,25(2):488-496.

[112] 李云春,李小坤,鲁剑巍,等. 控释尿素对水稻产量、养分吸收及氮肥利用率的影响[J]. 华中农业大学学报,2014,33:46-51.

[113] 李香玲. 施氮量对机插水稻根系特性的影响及其与地上部分生长和产量的关系[D]. 贵州:贵州大学作物栽培与耕作学科硕士学位论文,2016.

[114] 刘立军,王康君,卞金龙,等. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系[J]. 作物学报,2014,40:1999-2007.

[115] Zhu G,Peng S,Huang J,et al. Genetic improvements in rice yield and concomitant increases in radiation- and nitrogen-use efficiency inmiddle reaches of Yangtze river[J]. Scientific Reports,2016,6:21049.

[116] 孙建阳. 塑膜-麦秸系统对玉米产量的效应研究[J]. 农业科技与信息,2021,03:54-56.

[117] 施晓晖,陆小强,曹国华,等. 结球生菜高效栽培技术[J]. 现代农业科技,2019,12:64.

[118] 牛庆林,冯海宽,周新国,等. 冬小麦SPAD值无人机可见光和多光谱植被指数结合估算[J]. 农业机械学报,2021,52:183-194.

中图分类号:

 S511    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式