- 无标题文档
查看论文信息

中文题名:

 不同乳酸菌及其组合对水稻秸秆微贮的影响    

姓名:

 孙庆龙    

学号:

 S220502048    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095133    

学科名称:

 农学 - 农业 - 畜牧    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 东北农业大学    

院系:

 动物科学技术学院    

专业:

 畜牧(专业学位)    

研究方向:

 动物生产    

第一导师姓名:

 谢小来    

第一导师单位:

 东北农业大学    

第二导师姓名:

 孙海霞    

完成日期:

 2024-06-18    

答辩日期:

 2024-05-30    

外文题名:

 The Effect of Different Lactic Acid Bacteria and Their Combinations on Rice Straw Microbial Silage    

中文关键词:

 乳酸菌微贮 ; 水稻秸秆 ; 发酵品质 ; 微生物群落    

外文关键词:

 Lactic acid bacteria microbial fermentation ; rice straw ; fermentation quality ; Microbial community    

中文摘要:

中国水稻秸秆年产量约1.9亿吨,但由于其粗纤维含量高,营养价值低和适口性差等缺点,导致秸秆饲料化比例不足秸秆综合利用率的20%。大量研究表明,秸秆经过微贮后营养价值和适口性得到改善。但水稻秸秆受可溶性碳水化合物含量低和硅元素含量高等因素限制,目前实际应用于水稻秸秆微贮的菌种资源有限。本试验采用单因素试验设计,利用三种不同异型发酵乳酸菌单独及组合对水稻秸秆进行微贮发酵研究,三株异型发酵乳酸菌筛选自青贮燕麦和氨化秸秆,分别为布氏乳杆菌R17(Lactobacillus buchneri)、短乳杆菌R33(Lactobacillus brevis)和肠膜明串珠菌HN13(Leuconostoc mesenteroides),研究单菌处理、双菌处理和三菌处理对微贮水稻秸秆的营养成分、发酵品质和体外降解率的影响,通过高通量测序技术比较不同处理间微生物群落的变化,为异型发酵乳酸菌微贮水稻秸秆提供一定的数据支撑。试验结果表明:

不同处理对微贮水稻秸秆营养成分的影响

R33组、R33+HN13组、R17+HN13组、R33+R17组和R33+R17+HN13组极显著提高了微贮水稻秸秆的干物质(DM)含量(P<0.001),分别提高了4.80%、4.06%、5.16%、5.23%和5.34%,R17组和HN13组DM含量与对照组相比差异不显著(P>0.05)。对照组中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量分别为72.47%和47.01%,R33组、R33+HN13组、R33+R17组和R33+R17+HN13组四组NDF和ADF含量与对照组相比极显著降低(P<0.001),R17组、HN13组和R17+HN13组三组NDF和ADF含量与对照组差异不显著(P>0.05)。各处理对微贮水稻秸秆的粗蛋白质(CP)含量、碳(C)含量、可溶性碳水化合物(WSC)含量和酸性洗涤木质素(ADL)含量没有显著影响(P>0.05)。

不同处理对微贮水稻秸秆发酵品质的影响

R33组、R33+HN13组、R33+R17组和R33+R17+HN13组pH值和氨态氮(NH3-N)含量与对照组相比极显著降低(P<0.001),R17组pH值和氨态氮(NH3-N)含量与对照组相比显著降低(P<0.05),HN13组和R17+HN13组pH值和氨态氮(NH3-N)含量与对照组差异不显著(P>0.05)。

R33组、R33+HN13组、R33+R17组和R33+R17+HN13组乳酸含量达到19.64g/kg与对照组相比差异极显著(P<0.001),R17组、HN13组和R17+HN13组与对照组相比乳酸含量差异不显著(P>0.05)。各处理组乙酸和丙酸含量与对照组相比差异不显著(P>0.05)。R33组与R17组、HN13组和R17+HN13组三组相比丙酸含量显著提高(P<0.05)。对照组丁酸含量为19.83 g/kg,R33组、R33+HN13组、R33+R17组和R33+R17+HN13组均未检测出丁酸,与对照组相比差异极显著(P<0.001),HN13组显著降低了丁酸含量(P<0.05),R17组和R17+HN13组丁酸含量与对照组相比差异不显著(P>0.05)。

不同处理对水稻秸秆体外降解率的影响

12h时,R33组、R17组、HN13组、R33+HN13组和R33+R17+HN13组与对照组相比微贮水稻秸秆的体外降解率显著提高(P<0.05),R17+HN13组和R33+R17组与对照组差异不显著(P>0.05)。各处理组在24h后各时间点微贮水稻秸秆的体外降解率极显著提高(P<0.001)。其中R33组提高幅度最大,在12h、24h、48h和72h体外降解率分别较对照组提高了10.68%、11.44%、9.27%和9.12%。

不同处理对水稻秸秆微生物群落的影响

各处理组显著改变了微贮水稻秸秆的微生物群落结构。在门水平,R33、R33+HN13、R33+R17和R33+R17+HN13的厚壁菌门(Firmicutes)相对丰度均达到80%以上,与对照组相比极显著提高(P<0.001),未添加R33菌的处理组和对照组厚壁菌门的相对丰度差异不显著(P>0.05),相对丰度百分比相差40%以上。R17、HN13、R17+HN13和对照组变形菌门(Proteobacteria)相对丰度显著高于其他处理。从属水平上看,R33、R33+HN13、R33+R17、R33+R17+HN13和R17五组乳酸杆菌属(Lactobacillus)相对丰度与对照组相比差异极显著(P<0.001),前四组乳酸杆菌属(Lactobacillus)相对丰度在80%以上。其余菌属在R33、R33+HN13、R33+R17和R33+R17+HN13四组中相对丰度均在1%以下,与对照组差异显著(P<0.05)。从微生物相对丰度与发酵指标相关性分析中可以得出,乳酸杆菌属与CP含量和乳酸含量呈正相关,与NDF含量、ADF含量、pH值、NH3-N含量和丁酸含量呈负相关,考氏科萨克氏菌属、肠球菌属、明串珠菌属和产己酸菌属与DML呈正相关,与CP含量呈负相关。

综上所述,三种乳酸菌单独及组合处理均能不同程度改善水稻秸秆微贮发酵品质,其中R33菌处理对水稻秸秆微贮的效果优于其余各处理。R33能够大量产生乳酸显著降低pH值,抑制其他有害菌的生物活性,显著减少干物质的损失及NH3-N和丁酸的产生,同时,显著降低NDF和ADF的含量,显著提高了微贮水稻秸秆的体外降解率。显著改变了微生物群落结构,提高乳酸杆菌属相对丰度,降低肠杆菌属和肠球菌属相对丰度。

 

关键词:乳酸菌微贮;水稻秸秆;发酵品质;微生物群落。

 

外文摘要:

China has a huge production of rice straw, but due to its high fiber content, low nutritional level, and poor palatability, the utilization rate of rice straw by ruminants is low. Microbial fermentation can effectively improve the feeding value of rice straw and provide safe and inexpensive coarse feed for animal husbandry. This experiment used a single factor experimental design to use three different types of lactic acid bacteria, individually and in combination, for microbial fermentation fermentation of rice straw. Three strains of heterotypic fermentation lactic acid bacteria were selected from ensiled oats and ammoniated straw, namely R17 (Lactobacillus brucelli), R33 (Lactobacillus brevis), and HN13 (Streptococcus pneumoniae). An equal amount of distilled water was added as the control group, and single bacterial treatment groups were set up: R33, R17, and HN13; Dual bacterial treatment group: R33+HN13, R17+HN13, and R33+R17; Three bacterial treatment group: R33+R17+HN13. The main research findings are as follows:

The effect of different treatments on the nutritional composition of micro stored rice straw:

The R33 group, R33+HN13 group, R17+HN13 group, R33+R17 group, and R33+R17+HN13 group significantly increased the dry matter (DM) content of micro stored rice straw (P<0.001), increasing by 4.80%, 4.06%, 5.16%, 5.23%, and 5.34%, respectively. There was no significant difference in DM content between the R17 group and HN13 group and the control group (P>0.05). The content of neutral detergent fiber (NDF) and acidic detergent fiber (ADF) in the control group was 72.47% and 47.01%, respectively. The NDF and ADF content in the R33 group, R33+HN13 group, R33+R17 group, and R33+R17+HN13 group were significantly reduced compared to the control group (P<0.001), while the NDF and ADF content in the R17 group, HN13 group, and R17+HN13 group were not significantly different from the control group (P>0.05). Each treatment had no significant effect on the crude protein (CP) content, carbon (C) content, soluble carbohydrate (WSC) content, and acid washing lignin (ADL) content of micro stored rice straw (P>0.05).

 The effect of different treatments on the fermentation quality of micro stored rice straw

The pH value and ammonia nitrogen (NH3-N) content of R33 group, R33+HN13 group, R33+R17 group, and R33+R17+HN13 group were significantly reduced compared to the control group (P<0.001), while the pH value and ammonia nitrogen (NH3-N) content of R17 group were significantly reduced compared to the control group (P<0.05). The pH value and ammonia nitrogen (NH3-N) content of HN13 group and R17+HN13 group were not significantly different from the control group (P>0.05).

The lactate content in the R33 group, R33+HN13 group, R33+R17 group, and R33+R17+HN13 group reached 19.64g/kg, which was significantly different from the control group (P<0.001). However, there was no significant difference in lactate content between the R17 group, HN13 group, and R17+HN13 group and the control group (P>0.05). The content of acetic acid and propionic acid in each treatment group showed no significant difference compared to the control group (P>0.05). Compared with the R17 group, HN13 group, and R17+HN13 group, the propionic acid content in R33 group was significantly increased (P<0.05). The content of butyric acid in the control group was 19.83 g/kg. No butyric acid was detected in the R33 group, R33+HN13 group, R33+R17 group, and R33+R17+HN13 group, which was significantly different from the control group (P<0.001). The HN13 group significantly reduced the content of butyric acid (P<0.05), while the R17 group and R17+HN13 group had no significant difference in butyric acid content compared to the control group (P>0.05).

The effect of different treatments on the in vitro digestibility of rice straw

 At 12 hours, the in vitro digestibility of rice straw in the R33 group, R17 group, HN13 group, R33+HN13 group, and R33+R17+HN13 group significantly increased compared to the control group (P<0.05), while the differences between the R17+HN13 group and R33+R17 group and the control group were not significant (P>0.05). After 24 hours, the in vitro digestibility of rice straw micro stored in each treatment group was significantly improved at each time point (P<0.001). The R33 group showed the greatest improvement, with in vitro digestibility increased by 10.68%, 11.44%, 9.27%, and 9.12% compared to the control group at 12h, 24h, 48h, and 72h, respectively.

The effect of different treatments on the microbial community of rice straw

 Each treatment group significantly altered the microbial community structure of micro stored rice straw. At the phylum level, the relative abundance of Firmicutes in R33, R33+HN13, R33+R17, and R33+R17+HN13 reached over 80%, which was significantly higher than the control group (P<0.001). The relative abundance difference of Firmicutes between the treatment group without R33 bacteria and the control group was not significant (P>0.05), with a relative abundance percentage difference of over 40%. The relative abundance of Proteobacteria in the R17, HN13, R17+HN13 and control groups was significantly higher than other treatments. At the subordinate level, the relative abundance of Lactobacillus in the R33, R33+HN13, R33+R17, R33+R17+HN13, and R17 groups was significantly different from the control group (P<0.001), with the relative abundance of Lactobacillus in the first four groups exceeding 80%. The relative abundance of other bacterial genera in the R33, R33+HN13, R33+R17, and R33+R17+HN13 groups was below 1%, with significant differences compared to the control group (P<0.05). From the correlation analysis between the relative abundance of microorganisms and fermentation indicators, it can be concluded that Lactobacillus is positively correlated with CP content and lactate content, and negatively correlated with NDF content, ADF content, pH value, NH3-N content, and butyric acid content. Saccharomyces, Enterococcus, Streptomyces, and Caproic acid producing bacteria are positively correlated with DML and negatively correlated with CP content.

In summary, the three types of lactic acid bacteria, both individually and in combination, can improve the fermentation quality of rice straw micro storage to varying degrees. Among them, the R33 bacterial treatment has a better effect on rice straw micro storage than the other treatments. R33 can significantly reduce pH by producing a large amount of lactic acid, inhibit the biological activity of other harmful bacteria, significantly reduce dry matter loss and the production of NH3-N and butyric acid. At the same time, it significantly reduces the content of NDF and ADF, and significantly improves the in vitro digestion rate of micro stored rice straw. Significantly altered the microbial community structure, increased the relative abundance of lactobacilli, and decreased the relative abundance of Escherichia and Enterococcus genera.

 

Key words: Lactic acid bacteria microbial fermentation; rice straw; fermentation quality;Microbial community.

 

 

 

 

参考文献:

参考文献

[1] 黄秋颖. 水稻秸秆的高效厌氧发酵研究[D]. 北京化工大学, 2019. DOI:10.26939/d.cnki.gbhgu.2019.000093.

[2] 袁玉芳,类延菊,邵立业等. 农作物秸秆饲料开发利用技术及在动物生产中的应用 [J]. 饲料研究, 2023, 46 (16): 175-178. DOI:10.13557/j.cnki.issn1002-2813.2023.16.033.

[3] 曹丽雯,卢蕊,范吉标等. 新型饲草开发利用的基础生物学问题 [J]. 植物学报, 2022, 57 (06): 826-836.

[4] 陈熙,张徐彬,朱旺等. 我国水稻秸秆利用现状和饲用加工技术研究进展 [J]. 中国稻米, 2023, 29 (02): 24-27+33.

[5] 杨连玉,高阳. 玉米秸秆饲料化高效利用的瓶颈及解决策略 [J]. 吉林农业大学学报, 2016, 38 (05): 634-638+644. DOI:10.13327/j.jjlau.2016.3378.

[6] 覃诚. 中国秸秆禁烧管理与美国秸秆计划焚烧管理比较研究[D]. 中国农业科学院, 2019.

[7] 赵凌霄,姜丽娜,马建辉等. 秸秆过腹还田配施氮肥对小麦-玉米周年产量及土壤理化性质的影响 [J]. 河南农业科学, 2020, 49 (11): 26-36. DOI:10.15933/j.cnki.1004-3268.2020.11.004.

[8] 王飞,秦丽超. 畜牧业发展对环境的影响分析 [J]. 畜禽业, 2021, 32 (06): 61-62. DOI:10.19567/j.cnki.1008-0414.2021.06.037.

[9] 雷少斐. 国产苜蓿:扩量是关键 提质很迫切[N]. 农民日报, 2023-01-12 (006). DOI:10.28603/n.cnki.nnmrb.2023.000763.

[10]李九月,薛树媛,张海鹰等. 不同处理方法对玉米秸秆营养成分、物理结构及绵羊瘤胃干物质消化率的影响 [J]. 中国饲料, 2021, (05): 131-134. DOI:10.15906/j.cnki.cn11-2975/s.20210527.

[11]丛宏斌,姚宗路,赵立欣等. 中国农作物秸秆资源分布及其产业体系与利用路径 [J]. 农业工程学报, 2019, 35 (22): 132-140.

[12]许山晶,尹晓青. 我国农村秸秆资源利用的综合效应评价 [J]. 重庆社会科学, 2021, (02): 19-32. DOI:10.19631/j.cnki.css.2021.002.002

[13]姚爱萍,朱一丹,童一宁等. 农业废弃物资源化利用路径研究 [J]. 农业开发与装备, 2023, (12): 97-99.

[14]付铃莉,牛志力,陈俊宏等. 浅析“海水稻”秸秆的饲料化利用及营养价值评定 [J]. 今日畜牧兽医, 2021, 37 (03): 71-72.

[15]张俊丽,岳彩娟,梁小军等. 纤维素酶、乳酸菌对干糜草发酵品质与营养价值的影响 [J]. 饲料研究, 2023, 46 (15): 119-123. DOI:10.13557/j.cnki.issn1002-2813.2023.15.023.

[16]高雪梅. 不同添加剂处理的蒸汽爆破玉米秸秆品质评价及其组合效应研究[D]. 甘肃农业大学, 2021. DOI:10.27025/d.cnki.ggsnu.2021.000281.

[17]何建福,高骞,肖正中等. 农作物秸秆加工技术及其在肉牛生产中的应用研究进展 [J/OL]. 中国饲料, 1-7[2024-03-22].

[18]黄珍.产纤维素酶重组乳酸乳球菌的构建、对秸秆微贮品质的影响及机理[D].江西农业大学,2022.DOI:10.27177/d.cnki.gjxnu.2022.000002.

[19][1]包文龙,任家辉,张腾薇,等.12个饲用燕麦品种在乌兰察布生产力的综合评价[J/OL].草地学报,1-11[2024-04-04].http://kns.cnki.net/kcms/detail/11.3362.S.20240319.1806.007.html.

[20]吕中旺,王建,孙鹏等.秸秆主产区三大作物秸秆饲用品质分析与评价[J].草业科学,2018,35(08):2016-2021.

[21]戴林.木质纤维素酶水解葡萄糖定向生物氧化技术研究[D].南京林业大学,2023.DOI:10.27242/d.cnki.gnjlu.2023.000308.

[22]谢建华.半纤维素降解酶体系的挖掘和协同作用以及在提高饲料利用率上的应用研究[D].华南理工大学,2020.DOI:10.27151/d.cnki.ghnlu.2020.000083.

[23]孙竹文.芦苇木质纤维素高效降解工艺探索及优化[D].西北农林科技大学,2023.DOI:10.27409/d.cnki.gxbnu.2023.000270.

[24]韩宇杰,常潇,向海等.秸秆木质素降解细菌的筛选及其降解条件优化[J].动物营养学报,2023,35(07):4740-4751.

[25]李长春. 玉米品种及刈后放置时间对秸秆饲用价值的影响机制[D].内蒙古农业大学,2018.

[26]马金慧,范富,包呼格吉乐图等.不同收获时期的玉米饲用生物学产量和营养价值的比较研究[J].饲料研究,2022,45(19):104-108.DOI:10.13557/j.cnki.issn1002-2813.2022.19.021.

[27]霍春晓,李鑫,成真锐等.白腐菌降解甘草渣木质素及综纤维素工艺研究[J].黑龙江畜牧兽医,2020,(04):87-90.DOI:10.13881/j.cnki.hljxmsy.2019.07.0333.

[28]田雨佳,氧化钙处理玉米秸秆纤维结构变化及其在奶牛瘤胃内代谢机理研究.天津市,天津农学院,2022-03-29.

[29]冼霖,杨蒙,徐凯旋等.二氧化硅和不同处理方式对水稻秸秆质量影响的研究进展[J].中国饲料,2019,(06):12-16.DOI:10.15906/j.cnki.cn11-2975/s.20190603.

[30]AGBAGLA DOHNANI A., et al.Effect of silica content on rice straw ruminal degradation.The Journal of Agricultural Science 140.2(2003):183-192.

[31]张建强,任昌文,张春旺.不同小麦秸秆切碎长度及加工程度对奶牛干物质采食量、产奶量及消化率的影响[J].中国饲料,2019,(06):17-21.DOI:10.15906/j.cnki.cn11-2975/s.20190604.

[32]Kun W ,Xuemei N ,Jinjin T , et al.Steam Explosion Pretreatment Changes Ruminal Fermentation iin vitro/i of Corn Stover by Shifting Archaeal and Bacterial Community Structure.[J].Frontiers in microbiology,2020,112027-2027.

[33]马玉林,陈旭,于江楠等.复合氨化处理对我国南方水稻秸秆营养成分和瘤胃降解特性的影响[J].动物营养学报,2020,32(06):2674-2682.

[34]雷亚非.粗饲料秸秆的氨化技术[J].农家参谋,2017,(24):128.

[35]周邦翠.氨化饲料在畜牧生产中的价值[J].吉林畜牧兽医,2020,41(02):137-138.

[36]李聚才,施安,张国鸿等.不同复合氨化处理玉米秸秆对育成羊瘤胃干物质降解率的影响[J].中国饲料,2018,(17):61-66.DOI:10.15906/j.cnki.cn11-2975/s.20181713.

[37]吴道义,金深逊,周礼杨等.氨化油菜秸秆对威宁黄牛饲养效果的影响[J].黑龙江畜牧兽医,2015(02):26-27.DOI:10.13881/j.cnki.hljxmsy.2015.0090.

[38]Yulin M ,Xu C ,Zahoor M K , et al.Effect of the Combining Corn Steep Liquor and Urea Pre-treatment on Biodegradation and Hydrolysis of Rice Straw#13;[J].Frontiers in Microbiology,2022,13916195-916195.

[39]Junfeng L ,Xiaoyue T ,Sifan C , et al.Ensiling pretreatment with two novel microbial consortia enhances bioethanol production in sterile rice straw.[J].Bioresource technology,2021,339125507-125507.

[40]Jiménez M I ,Chandel K A ,Marcelino R P , et al.Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides[J].Bioresource Technology,2020,301122706.

[41]杜红.农作物秸秆的生物发酵研究进展[J].饲料研究,2022,45(02):154-157.DOI:10.13557/j.cnki.issn1002-2813.2022.02.033.

[42]刘晓强.菌化秸秆饲料研究[J].草食家畜,1998,(04):39-40.DOI:10.16863/j.cnki.1003-6377.1998.04.012.

[43]Wang L L ,Li F Y ,Yu S Y , et al.Effects of a Delayed Harvest and Additives on the Fermentation Quality of Corn Stalk Silage[J].Agriculture,2024,14(2):

[44]Diogénes V L ,Filho P M J ,Edvan L R , et al.Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review[J].Ruminants,2023,3(4):425-444.

[45]李骅,赵汝东,李超等.水稻秸秆微贮制备饲料的试验[J].沈阳农业大学学报,2021,52(03):329-335.

[46]刘道春.玉米秸秆青贮和微贮利用技术[J].浙江畜牧兽医,2021,46(04):18-20.

[47]李鸿志,刘素华,张胜利.如何应对奶牛养殖的青贮玉米短缺状况[J].北方牧业,2021,(23):30.

[48]陈浩林,杨红文.四种农牧产品青贮、微贮的应用效果[J].养殖技术顾问,2014,(04):51-52.

[49]孙志诚,徐睿,杨小莉.秸秆微贮关键技术及牛羊饲喂效果观察[J].中国畜牧兽医文摘,2016,32(07):217.

[50]严平,余雪梅,郝桂英,等.玉米秸秆微贮饲料饲喂肉羊效果观察[J].西昌学院学报(自然科学版),2008,(01):33-34+38.

[51]于明,程波,曲强,等.微贮和氨化玉米秸秆对辽宁绒山羊饲喂价值的研究[J].饲料研究,2022,45(19):17-21.DOI:10.13557/j.cnki.issn1002-2813.2022.19.004.

[52]魏炳栋,邱玉朗,陈群,等.发酵玉米秸秆对育肥羊生长性能、营养物质消化率及甲烷排放的影响[J].中国畜牧兽医,2016,43(12):3200-3205.DOI:10.16431/j.cnki.1671-7236.2016.12.017.

[53]王福厚,陈化靓,唐文雅,等.玉米秸秆微贮营养价值的变化及对肉羊生长性能影响的研究[J].畜牧兽医杂志,2023,42(03):45-46+49.

[54]邱玉朗,朱煜升,李林,等.不同处理秸秆营养成分及对肉羊生长性能的影响[J].饲料研究,2020,43(12):13-16.DOI:10.13557/j.cnki.issn1002-2813.2020.12.004.

[55]孟春花,乔永浩,钱勇等.微贮对油菜秸秆营养成分及其在山羊瘤胃中降解特性的影响[J].南京农业大学学报,2020,43(02):326-332.

[56]Ghedin L G ,Antonio T V D ,Castro D M E Z , et al.Effects of homofermentative lactic acid bacteria and powdered molasses on fermentative losses, chemical composition and aerobic stability in whole-plant soybean silage[J].New Zealand Journal of Agricultural Research,2023,66(6):651-664.

[57]Keles G ,Kurtoglu V ,Demirci U , et al.Conservation Characteristics of Triticale-Hungarian Vetch Silage Ensiled with Homo-fermentative or Hetero-fermentative Lactic Acid Bacteria in Jars[J].Animal Nutrition and Feed Technology,2014,14(1):69-79.

[58]Blajman E J ,Vinderola G ,Páez B R , et al.The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis[J].The Journal of Agricultural Science,2020,158(1-2):107-118.

[59]王诚,张莹,王玲等.同/异型发酵乳酸菌对玉米秸秆青贮品质及有氧稳定性的影响[J].湖南饲料,2023(03):35-39.

[60]白长胜.乳酸菌和纤维素酶微贮发酵大豆秸秆过程中pH和微生物的变化[J].中国饲料,2022,(19):140-143.DOI:10.15906/j.cnki.cn11-2975/s.20221923.

[61]伍玉鹏,刘恒恒,胡荣桂等.不同预处理方式对油菜秸秆微贮饲料品质的影响[J].中国饲料,2022,(19):134-139.DOI:10.15906/j.cnki.cn11-2975/s.20221922.

[62]高祎妍.玉米秸秆发酵菌剂的筛选优化及对黄贮效果影响研究[D].吉林农业大学,2019.DOI:10.27163/d.cnki.gjlnu.2019.000245.

[63]付薇,陈伟,韩永芬等.添加不同乳酸菌对玉米秸秆青贮有氧稳定性影响的研究[J].畜牧与饲料科学,2019,40(09):45-49.

[64]王加黛,王利军,王平等.植物乳杆菌与纤维素酶组合对玉米秸秆微贮品质的影响[J].饲料工业,2023,44(19):90-94.DOI:10.13302/j.cnki.fi.2023.19.015.

[65]袁凯鑫. 复合益生菌发酵棉秆对肉羊生长性能及瘤胃微生物的影响[D].西北农林科技大学,2023.DOI:10.27409/d.cnki.gxbnu.2023.001317.

[66]杨佳,李琦华,安清聪等.不同青贮添加剂对全株玉米青贮品质的影响[J].饲料博览,2022(06):46-51.DOI:10.20041/j.cnki.slbl.2022.06.009.

[67]徐鹏飞,王旭哲,杨寒珺等.添加糖蜜和乳酸菌对棉秆微贮品质的影响[J].饲料研究,2022,45(17):94-101.DOI:10.13557/j.cnki.issn1002-2813.2022.17.021.

[68][1]G. M ,A. B,O. V, et al.Screening of multifunctional bacterial inoculants with lignocellulose degradation ability for agricultural applications[J].Studia Universitatis Vasile Goldis: Seria Stiintele Vietii,2016,26(2):225-233.

[69]李青洋,邱胜男,唐云梦等.两种芽孢杆菌对谷类作物秸秆微贮效果的影响[J].土壤与作物,2023,12(02):153-160.

[70]李娅楠.乳杆菌与地衣芽孢杆菌复合微贮对稻草营养价值影响及机理研究[D].宁夏大学,2022.DOI:10.27257/d.cnki.gnxhc.2022.000538.

[71]杨继业. 产酸芽孢杆菌的分离筛选及对玉米秸秆的微贮效果[D].河北农业大学,2016.

[72]Liu X ,Wang A ,Zhu L , et al.Effect of additive cellulase on fermentation quality of whole-plant corn silage ensiling by a Bacillus inoculant and dynamic microbial community analysis[J].Frontiers in Microbiology,2024,141330538-1330538.

[73]Xueying Z ,Shanshan Z ,Yanping W , et al.The Effect of Lactiplantibacillus plantarum ZZU203, Cellulase-Producing Bacillus methylotrophicus, and Their Combinations on Alfalfa Silage Quality and Bacterial Community[J].Fermentation,2023,9(3):287-287.

[74]Colin H ,Francisco G ,Gregor R , et al.Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.[J].Nature reviews. Gastroenterology hepatology,2014,11(8):506-14.

[75]马惠茹,陈艳君,茹婷.酵母菌发酵粗饲料效果的研究[J].现代畜牧兽医,2021,(05):15-17.

[76]李骅,赵汝东,李超等.水稻秸秆微贮制备饲料的试验[J].沈阳农业大学学报,2021,52(03):329-335.

[77]Fonty G ,Chaucheyras-Durand F .Effects and modes of action of live yeasts in the rumen[J].Biologia,2006,61(6):741-750.

[78]孟令凯,郭春华,彭忠利等.微生态制剂对高丹草和牛鞭草青贮效果的影响[C]//中国畜牧兽医学会动物营养学分会.第七届中国饲料营养学术研讨会论文集.西南民族大学生命科学与技术学院;四川省乐至县科技局;,2014:1.

[79]王燕雲,刁治民,陈克龙.白腐真菌资源及其在饲料方面的应用[J].青海草业,2014,23(04):36-40.

[80]王阔鹏.白腐真菌发酵对三种秸秆营养价值及奶牛瘤胃降解效果的影响[D].扬州大学,2022.DOI:10.27441/d.cnki.gyzdu.2022.001654.

[81]刘瑞玲,李景荣,马钿坪等.玉米秸秆生物饲料对肉牛生产性能的影响[J].饲料博览,2020,(10):58-60.

[82]赵雪莉.白腐真菌发酵对玉米秸秆纤维降解和绵羊饲喂价值的影响[D].西南大学,2020.DOI:10.27684/d.cnki.gxndx.2020.003726.

[83]代小伟.白腐真菌和黑曲霉降解蔗渣、稻草中木质素以及发酵饲料体外消化试验的研究[D].广西大学,2004.

[84]Kleinschmit D ,Kung L .The Effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the Fermentation of Corn Silage[J].Journal of Dairy Science,2006,89(10):3999-4004.

[85]Reich J L ,Kung L .Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage[J].Animal Feed Science and Technology,2010,159(3-4):105-109.

[86]Liu J ,Wang Y ,Wang X , et al.The effect of Lactobacillus brevis and fibrolytic enzymes on fermentation of switchgrass silages[J].Journal of Animal Science,2016,94

[87]Shengyang X U , Xudong M , Ying Y ,et al.Effect of Lactobacillus brevis on the quality of whole plant corn silages during aerobic exposure[J].Pratacultural Science, 2019.

[88]张雄杰,孙庆林,达赖,等.肠膜明串珠菌胞外多糖的研究进展及其在饲料业中的应用前景[J].畜牧与饲料科学,2012,33(09):59-62.DOI:10.16003/j.cnki.issn1672-5190.2012.09.041.

[89]Jian W ,Lei C ,Xian-jun Y , et al.Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China[J].Journal of Integrative Agriculture,2017,16(03):664-670.

[90]许灵敏,郭照宙,武洪志,等.不同比例和水分对籽用南瓜和玉米秸秆混贮效果的影响[C]//中国畜牧兽医学会动物营养学分会.中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集.东北农业大学动物科学技术学院;,2016:1.

[91]郝建辉.不同青贮添加剂对紫花苜蓿青贮营养价值、发酵品质和瘤胃降解率的影响[J].饲料研究,2022,45(07):100-103.DOI:10.13557/j.cnki.issn1002-2813.2022.07.021.

[92]Yang X L , Li J L , Yu Z ,et al.Influence of Moisture Content on the Silage Quality of Lolium multiflorum[J].Journal of Animal & Veterinary Advances, 2014, 13(12):702-705.DOI:10.3923/javaa.2014.702.705.

[93]李苗苗,谢华德,王立超等.不同水分及乳酸菌处理对玉米秸秆黄贮发酵指标和体外干物质消失率的影响[J].黑龙江畜牧兽医,2018,(19):133-137+145.DOI:10.13881/j.cnki.hljxmsy.2017.12.0276.

[94]Zhushan N .THE STUDY OF WATER CONTENT EFFECT ON THE QUALITY OF ENSILAGE LUCERNE[J]. 1990.

[95]武祎,赵红玉,唐云梦,等.添加短乳杆菌对紫花苜蓿半干青贮品质及微生物群落组成的影响[J].中国畜牧杂志,2024,60(02):328-333.DOI:10.19556/j.0258-7033.20230924-02.

[96]Yu S ,Qinglong S ,Yunmeng T , et al.Integrated microbiology and metabolomic analysis reveal the improvement of rice straw silage quality by inoculation of Lactobacillus brevis[J].Biotechnology for Biofuels and Bioproducts,2023,16(1):184-184.

[97]宋云皓.内蒙古自治区东部地区玉米秸秆微贮菌剂的开发及利用[D].内蒙古农业大学,2018.

[98]王斌,朱克华,贺亚媚.不同处理稻草育肥西镇牛的效果分析[J].陕西农业科学,2018,64(08):26-28.

[99]马玉林,陈旭,肖鉴鑫,等.氨化和微贮对水稻秸秆营养成分和体外降解率的影响[J].中国畜牧杂志,2020,56(11):157-161.DOI:10.19556/j.0258-7033.20191217-01.

[100]曾辉,邱玉朗,李林,等.酶制剂和乳酸菌对秸秆微贮饲料质量及瘤胃降解率的影响[J].中国畜牧杂志,2018,54(11):84-88.DOI:10.19556/j.0258-7033.2018-11-084.

[101]杨艳,夏宗群,顾瑶,等.不同发酵剂对花生秸秆微贮品质的影响研究[J].江西畜牧兽医杂志,2022,(06):46-49.

[102]段旭磊.瞬时弹射式蒸汽爆破干黄玉米秸秆发酵生产生物饲料的研究[D].河南农业大学,2019.DOI:10.27117/d.cnki.ghenu.2019.000187.

[103]刘小可.三种低质粗饲料不同微贮效果的优选与评价[D].宁夏大学,2013.

[104]唐云梦.两株木质素降解菌的筛选鉴定及其对秸秆微贮的影响[D].中国科学院大学(中国科学院东北地理与农业生态研究所),2023.DOI:10.27536/d.cnki.gccdy.2023.000051.

[105]王跃先,朱慧媛.益生菌发酵微贮饲料及其在反刍动物养殖中的应用[J].饲料研究,2023,46(17):177-181.DOI:10.13557/j.cnki.issn1002-2813.2023.17.035.

[106]刘建成,王珊珊,孙文杰,等.籽用西葫芦和打瓜皮瓤与小麦秸秆混合微贮对其发酵品质、营养成分及瘤胃降解率的影响[J].新疆农业大学学报,2023,46(02):87-93.DOI:10.20088/j.cnki.jxau.2023.02.001.

[107]游小凤.添加纤维素酶和乳酸菌对金针菇菌糠微贮效果的研究[J].安徽农学通报,2021,27(08):26-27+63.DOI:10.16377/j.cnki.issn1007-7731.2021.08.010.

[108]马东旺.细菌组合对玉米秸秆发酵品质的影响及其体外发酵效果的评价[D].塔里木大学,2023.DOI:10.27708/d.cnki.gtlmd.2023.000468.

[109]任淑月,郝庆红,郭云霞,等.微贮玉米秸秆对羊瘤胃液中挥发性脂肪酸含量的影响[J].中国饲料,2016,(18):32-35.DOI:10.15906/j.cnki.cn11-2975/s.20161809.

[110]殷雨洋,范阳,齐伟彪,等.自然发酵和益生菌发酵豆渣饲料的发酵品质、营养成分及微生物菌群组成分析[J].中国畜牧杂志,2023,59(05):241-246.DOI:10.19556/j.0258-7033.20220913-02.

[111]李荣荣,郑猛虎,崔欣雨,等.优良乳酸菌的筛选及对苜蓿青贮发酵品质的影响[J].中国草地学报,2021,43(11):69-75+104.DOI:10.16742/j.zgcdxb.20200388.

[112]邢智华,魏荣荣,闫宏.添加乳酸菌对稻草与苜蓿混合微贮消化率的影响[J].畜牧与兽医,2015,47(02):44-46.

[113]吴永杰,丁浩,邵涛,等.酶制剂对水稻秸秆青贮发酵品质及体外消化特性的影响[J].草业学报,2022,31(08):167-177.

[114]任亚琼,张巧娥,陶然,等.菌酶协同处理对玉米秸秆饲用价值的影响[J].中国畜牧杂志,2023,59(05):247-252.DOI:10.19556/j.0258-7033.20220426-03.

[115]谢文斌,陈娟娟,田斌,等.布氏乳杆菌对玉米秸秆青贮品质和体外降解率的影响[J].饲料研究,2022,45(21):122-126.DOI:10.13557/j.cnki.issn1002-2813.2022.21.025.

[116]Weichen B ,Zhihui M ,Haiyan X , et al.Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters.[J].Scientific reports,2016,6(1):28358.

[117]黄存辉,朴泓洁,金清,等.肠膜明串珠菌发酵对四川泡菜中有机酸生成的影响[J].食品科技,2018,43(06):23-28.DOI:10.13684/j.cnki.spkj.2018.06.005.

[118]李祎,吴晓敏,杜航,等.一株肠膜明串珠菌的分离鉴定及其抑菌特性[J].微生物学通报,2021,48(12):4776-4788.DOI:10.13344/j.microbiol.china.210350.

[119]M. A H ,Rodrigo R ,A. R R .Alpha species diversity measured by Shannon’s H-index: Some misunderstandings and underexplored traits, and its key role in exploring the trophodynamic stability of dynamic multiscapes[J].Ecological Indicators,2023,156

[120]刘悦.海南岛四种天然饲草青贮微生物多样性及优良乳酸菌筛选[D].海南大学,2023.DOI:10.27073/d.cnki.ghadu.2023.000561.

[121]马东旺.细菌组合对玉米秸秆发酵品质的影响及其体外发酵效果的评价[D].塔里木大学,2023.DOI:10.27708/d.cnki.gtlmd.2023.000468.

[122]Eikmeyer G F ,Köfinger P ,Poschenel A , et al.Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling[J].Journal of Biotechnology,2013,167(3):334-343.

[123]徐鹏飞,王旭哲,杨寒珺,等.添加糖蜜对棉秆微贮品质及有氧稳定性的影响[J].新疆农业科学,2023,60(03):715-726.

[124]牟林林.乳酸菌及酶制剂对稻草青贮发酵品质及微生物多样性的影响[D].南京农业大学,2019.DOI:10.27244/d.cnki.gnjnu.2019.001563.

[125]Z. B ,Z. T ,D. M R , et al.Silage fermentation characteristics of grass-legume mixtures harvested at two different maturity stages[J].Biotechnology in Animal Husbandry,2015,31(2):303-311.

[126]许冬梅.不同气候区及乳酸菌影响玉米青贮发酵的微生物组与代谢组学机制研究[D].兰州大学,2021.DOI:10.27204/d.cnki.glzhu.2021.000035.

[127]王一凡,卓兴良,王磊,等.收割时间与加工方式对天然牧草产品品质和体外降解率的影响[J/OL].草业学报,1-10[2024-03-31].http://kns.cnki.net/kcms/detail/62.1105.S.20240314.0915.002.html.

中图分类号:

 S816    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式